

$H \rightarrow WW \rightarrow 2I2v$ in 0 and 1-jet Final States at CMS

Jae Hyeok Yoo(UC San Diego) jaehyeokyoo@gmail.com on behalf of CMS collaboration

DPF 2013, Santa Cruz, USA, Aug 13-17, 2013

Overview of talk

- The $H \rightarrow WW \rightarrow 2I2v$: signal and background
- Signal extraction
- Background estimation
- Fit validation for shape analysis
- Search results
- Spin-parity hypothesis test
- Summary

Large signal yields

- good statistical power to measure signal strength
- This channel measures the signal strength with the best precision with current data

3

from $ZZ \rightarrow 4I$ and $\gamma\gamma$

- measure overall excess on top of backgrounds
- very important to understand backgrounds
- measure signal strength at the measured M_H

Signature and analysis strategy

• Signature

- Two energetic, identified/isolated, opposite-sign leptons (e or μ)
- large missing transverse energy(MET)
- Background composition depends on
 - number of jets : 0 and 1
 - lepton flavor : ee/µµ and eµ
- Analysis optimized in 4 categories

0-jet ee/μμ	0-jet eµ
l-jet ee/μμ	l-jet eµ

Signature and analysis strategy

5

The $H \rightarrow WW \rightarrow 2I2v$ channel

- Signature
 - Two energetic, identified/isolated, opposite-sign leptons (e or μ)
 - large missing transverse energy(MI
- Background composition dependent
 - number of jets : 0 and 1

0-jet ee/ $\mu\mu$

I-jet ee/ $\mu\mu$

- lepton flavor : $ee/\mu\mu$ and $e\mu$
- Analysis optimized in 4 categories

0-jet eµ

l-jet eµ

MET

56.0 GeV

CMS Experiment at LF

Backgrounds

How they fake signal and how to suppress them

Color code : two opposite-sign leptons MET handles for suppression

Backgrounds

How they fake signal and how to suppress them

Color code : two opposite-sign leptons MET handles for suppression

Signal Extraction

How to extract signal yields : cut-based

- Baseline selection to reject backgrounds : WW selection
- Two approaches : cut-based(ee/µµ/eµ) and shape-based(eµ)

Signal Extraction

How to extract signal yields : shape-based

 Use binned 2D templates of [M_T,M_{II}] and fit the full shape

 $M_{T} = \sqrt{2p_{T}^{ll} \cdot MET \cdot (1 - \cos(\Delta \phi_{ll-MET}))}$

- Applied to only eµ channel
- Two templates : for low (<300 GeV) and high(≥300 GeV) Higgs mass
- Large signal-free region to constrain backgrounds : especially WW in 0-jet
- More sensitive than cut-based

Background Estimation

Overview of background estimation

rssed	Background	Method
e discu	$\sim\sim\sim$	Data-driven
vill be	Тор	Data-driven
>	Drell-Yan	Data-driven
	W+jets	Data-driven
	WY*	Data-driven
	Wγ	from MC
	WZ/ZZ	from MC

- WW selection applied
- Data-driven methods for dominant backgrounds
 - Measure the ratio(ε) of yields in signal region(SR) to control region(CR) in an independent sample(data or MC), and apply ε to CR

• Others are taken from MC

WW Estimation

- Main background in the 0-jet category
- Cut-based analysis : extrapolation from high M_{II} to low M_{II} region

 Shape-based analysis : Data/MC in whole M_{II} region is taken → fit is able to constrain WW using high M_{II}, high M_T regions

CRI

280

M

60

12 60

CR2

120

Is the WW fit model correct ?

- Need to make sure fit model fits data correctly : WW, Top, W+jets, WY(*), ...
- WW template is taken from MC normalized by data-driven estimation and shapes are allowed to move to match data in the fit
- Test WW fit model using WW sideband in eµ 0-jet
 - Divide signal-free region into two control regions (CRI and CR2)
 - Predict CRI(2) from the fit result using only CR2(I)
 - All other backgrounds are fixed by nominal fit to test only WW

CRI

280

M

60

12 60

CR2

120

Is the WW fit model correct ?

- Need to make sure fit model fits data correctly : WW, Top, W+jets, WY(*), ...
- WW template is taken from MC normalized by data-driven estimation and shapes are allowed to move to match data in the fit
- Test WW fit model using WW sideband in eµ 0-jet
 - Divide signal-free region into two control regions (CRI and CR2)
 - Predict CRI(2) from the fit result using only CR2(I)
 - All other backgrounds are fixed by nominal fit to test only WW

Are the Top and W+jets/WY(*) models correct?

- Fit two control regions populated by Top and W+jets/W γ (*)
- Same selections as 2D analysis except for inverting top-veto and opposite-sign requirements

200

Are the Top and W+jets/WY(*) models correct?

- Fit two control regions populated by Top and W+jets/WY(*)
- Same selections as 2D analysis except for inverting top-veto and opposite-sign requirements

Search Results

Exclusion : Compatible with SM Higgs hypothesis?

2D method is used in eµ channel and cut-based method is used in ee/µµ channel

DPF 2013, Aug 13-17, 2013

Search Results

Significance : Compatible with bkgd-only hypothesis?

2D method is used in eµ channel and cut-based method is used in ee/µµ channel

DPF 2013, Aug 13-17, 2013

Is signal strength consistent with SM Higgs?

500 600

m_H [GeV]

Results

Signal strength (µ)					
$\mu = 0.76 \pm 0.13 \text{ (stat.)} \pm 0.16 \text{ (syst.)}$ $= 0.76 \pm 0.21 \text{ (stat.+syst.)}$	μ(H→γγ) μ(H→ZZ→4I)	= 0.78 ± 0.27 (stat.+syst.) = $0.91^{+0.30}$ -0.24 (stat.+syst.)			

DPF 2013, Aug 13-17, 2013

10⁻¹

100

200

300

Search Results

Is "Data – background" consistent with SM Higgs?

- Data background plots in 0/1-jets eµ with S/(S+B) weighting
 - S/(S+B) weighting at each bin of 2D template
 - Post-fit normalization and uncertainties

Important plots to show consistency of data with SM Higgs

DPF 2013, Aug 13-17, 2013

 $H \rightarrow WW \rightarrow 2I2\nu(0/Ijet)$ at CMS - Jae Hyeok Yoo

Search Results

Is "Data - background" consistent with SM Higgs?

- Data background plots in 0/1-jets eµ with S/(S+B) weighting
 - S/(S+B) weighting at each bin of 2D template
 - Post-fit normalization and uncertainties

Important plots to show consistency of data with SM Higgs

- $H \rightarrow WW \rightarrow 2I2v$ has good sensitivity to distinguish SM Higgs($J^P=0^+$) from a spin-2 resonance which couples to di-boson through minimal couplings($J^P=2^+$)
- Use the same 2D templates and background estimation as the main analysis in 0/1-jets eµ categories

• Test gg \rightarrow H/X (gg \rightarrow X normalized to gg \rightarrow H)

DPF 2013, Aug 13-17, 2013

Spin-parity Test Is data consistent with 2⁺ model?

CMS Preliminary $\sqrt{s} = 7 \text{ TeV}, L = 4.9 \text{ fb}^{-1}; \sqrt{s} = 8 \text{ TeV}, L = 19.5 \text{ fb}^{-1}$

• Test statistic

used for search

• Result using the best fit values $(\mu^{0+}=0.76 \text{ and } \mu^{2+}=0.83)$

Assumed	Separation of other model			
Model (J ^P)	Expected	Observed		
0+	Ι.5σ	0.5σ		
2+	Ι.8σ	Ι.3σ		

- The whole Run1 LHC data of 4.9 + 19.5 fb⁻¹ analyzed for SM Higgs boson search in H→WW→2l2v 0/1-jet channel
 - Fit model validated using data
 - Significance : $4.0\sigma / 5.1\sigma$ (observed/expected)
 - Signal strength : $\mu = 0.76 \pm 0.13$ (stat.) ± 0.16 (syst.)
- Spin-parity hypothesis test performed in 0/1-jet eµ categories
 - Inconsistency with 2+ model : 1.3σ
- All results are consistent with SM Higgs at $M_H = 125$ GeV
- Future plan
 - Publication in progress including VBF and other leptonic channels(WH/ZH)

DPF 2013, Aug 13-17, 2013

Extra slides

- Standard Model Higgs : charge = 0 and spin = 0
- Mass is a free parameter \rightarrow task for experimentalists

Standard Model Higgs Boson

WW selection

Selection [units]	√s = 7 [·]	TeV	√s = 8 TeV		
	ee,µµ	eµ	ee,µµ	eµ	
pTmax [GeV/c]	20	20	20	20	To suppress WZ/ZZ
pTmin [GeV/c]	15	10	10	10	
third lepton veto	applied	applied	applied	applied	T I M
opposite-sign requirement	applied	applied	applied	applied	To suppress low M _{II} resonan
mll [GeV/c2]	20	12	12	12	To suppress DY, QCD
projected MET [GeV]	$37 + N_{vtx}/2$	20	20	20	
Drell-Yan MVA			applied		
Z mass veto	applied		applied		To suppress DY
$\Delta \phi$ (II-jetmax) [dg.]	165				
top veto	applied	applied	applied	applied	To suppress Top
pT∥ [GeV/c]	45	30 [*]	45	30 [*]	To suppress W+iets

[*] For the cut and count analysis, pT^{II} is required to be larger than 45 GeV.

M_H-dependent selection for cut-based analysis

Top Estimation

- Main background in I-jet category
- Handle : presence of b-quarks \rightarrow top tagging with b-tagged jets and soft muons
- Extrapolation from top-tagged region to top-vetoed region

W+jets Estimation

- Jets can be mis-identified as leptons
- Measure the rate(Fake Rate) for a lepton with loose selection to pass the full requirement in data events dominated by QCD
- Apply FR to the control region where one lepton passes the full selection and the other passes loose selection but not full selection

• Systematics : ~ 40 %

Drell-Yan Estimation

- Main background in ee/ $\mu\mu$ final states
- Handle : Z mass veto and MVA-based Drell-Yan suppression technique
 → worse sensitivity than eµ channel
- Extrapolation from inside to outside of Z peak

Rout/in in Data and MC

WW Selection Results

Putting all these together

Systematics

- Luminosity : 4.4 % (8TeV), 2.2% (7 TeV)
- Theoretical uncertainties on signal following LHC cross section recommendation
 - PDF + higher order effects + UEPS : 20 30 %
- Background normalization
 - WW : 5/10 % for cut-based, W+jets : 36 %, Top : 20/5 %, DY : 30 200 %, WY(*) : 30 40 %
- Instrumental
 - Lepton identification and trigger efficiency : 3(4) % for muon(electron)
 - Lepton Energy/Momentum scale : 1.5 % for muon, 2 % (5 %) for electron in barrel (endcap)
 - MET resolution : 2 %, Jet energy scale : 2 10 %
- Shape variations
 - Instrumental variation : list same as above
 - Backgrounds :
 - WW : QCD scale variation and different generators(Madgraph vs MC@NLO)
 - Top : different generators(Madgraph vs Powheg)
 - W+jets : difference away jet pT thresholds

used to make data - bkgd plots

cut-based : cut-based ee/ $\mu\mu$ + cut-based e μ shape-based : cut-based ee/ $\mu\mu$ + shape-based e μ

	7 TeV	8 TeV			7+8 TeV
expected/ob	ected/observed significance		expected/observed significance		oserved significance
cut-based	shape-based	cut-based shape-based		cut-based	shape-based
1.7/0.8	2.5/2.2	2.6/2.1	4.7/3.5	2.7/2.0	5.1/4.0

	7 TeV		8 TeV	7+8 TeV		
expected/ob	oserved significance	e expected/observed significance		ificance expected/observed significar		
best fit value		best fit value		best fit value		
cut-based shape-based		cut-based shape-based		cut-based	shape-based	
0.46 ± 0.57	0.91 ± 0.44	0.79 ± 0.38	0.71 ± 0.22	0.71 ± 0.37	0.76 ± 0.21	