Prospects for Fundamental Physics and Cosmology with the Cherenkov Telescope Array

David A. Williams
Santa Cruz Institute for Particle Physics
University of California, Santa Cruz

For the CTA Consortium
http://www.cta-observatory.org
The CTA Concept

- Arrays in northern and southern hemispheres for full sky coverage
- 4 large (~23 m) telescopes in the center (LSTs)

 Threshold of ~30 GeV
- ≥25 medium (9-12 m) telescopes (MSTs) covering ~1 km²

 Order of magnitude sensitivity improvement in 100 GeV–10 TeV range
- Small (~4 m) telescopes (SSTs) covering >3 km² in south

 >10 TeV observations of Galactic sources
- Construction begins in ~2015
Blue Cherenkov light beamed forward
Illuminates $\sim 10^5 \text{ m}^2$ on the ground
Short flash of few nanoseconds
Intensity $O(10 \text{ photons/m}^2)$ @ 1 TeV
Clue:
imaging the cascade
geometry ➔ photon direction
intensity ➔ photon energy
shape ➔ cosmic ray rejection
Clue:
imaging the cascade geometry ➜ photon direction
intensity ➜ photon energy
shape ➜ cosmic ray rejection

Multi-telescope systems provide a 3D view of the cascade
From current arrays to CTA

Light pool radius
\[R \approx 100-150 \text{ m} \]
\[\approx \text{typical telescope spacing} \]

Sweet spot for best triggering and reconstruction:
Most shower cores miss it!

Large detection area
More images per shower
Lower trigger threshold
From current arrays to CTA

Light pool radius
R \approx 100-150 \text{ m}
\approx \text{typical telescope spacing}

Sweet spot for best triggering and reconstruction:
Most shower cores miss it!

Large detection area
More images per shower
Lower trigger threshold

With US telescopes
Why a large array?

Sufficiently large and capable MST array is the primary goal of the US groups

- Double the size of the southern array
- Developing novel design w/ secondary mirror & <0.07° optical psf
Differential Sensitivity

0.1% Crab Nebula
Fermi (3 yr, Extragalactic)
Hybrid-1 SC-MST (50 hrs)
Prod-1 Array I (50 hrs)
Hybrid-1 DC-MST (50 hrs)

~3x improvement in core energy range from US contribution

CTA Baseline (50 hr)
w/ US Extension (50 hr)
Recommended by several relevant roadmaps …
Recommended by several relevant roadmaps ...

Report of the HEPAP Particle Astrophysics Scientific Assessment Group (PASAG)

23 October 2009
Simulated Galactic Plane surveys

H.E.S.S.

CTA, for same exposure

Expect ~1000 detected sources over the whole sky

Resolving complex sources

SN 1006 — a detected VHE gamma-ray source
Resolving extragalactic sources: Cen A

Fermi LAT >200 MeV background-subtracted counts map of Cen A
Abdo et al. 2010, Science 328, 725

Fermi LAT PSF at 10 GeV
CTA PSF at 100 GeV (≥2 images)
CTA PSF at 300 GeV (≥10 images)
(68% containment)

Expect to detect hundreds of AGN
Dark matter searches with CTA

More details in following talk by Matthew Wood
Extragalactic Background Light

$\gamma_{\text{High Energy}} + \gamma_{\text{EBL}} \rightarrow e^+ e^-$

Difficult to measure EBL because of foreground sources

Test of cosmology

Attenuation by $1/e$ (i.e. $e^{-\tau}$ with $\tau = 1$) for $z \sim 1.2$ at 100 GeV, $z \sim 0.1$ at 1 TeV

Photon Propagation through the Cosmos

Spectral index Γ from fit to $dN/dE \sim E^{-\Gamma}$

EBL model of Franceschini et al. 2008

The EBL and Intergalactic B Fields

- Electrons produced by
 \[\gamma_{\text{High Energy}} + \gamma_{\text{EBL}} \rightarrow e^+ e^- \]
 Compton scatter off EBL to produce more photons
- Amount that the cascade fans out depends on intergalactic magnetic field (IGMF) strength
- Observable effects:
 - Pair halo
 - Spectral distortion
 - Large time delays between prompt and reprocessed photons

Figures from Taylor et al. 2011, arXiv: 1101.0932
Axion-like Particles (ALPs)

Simulated CTA observation
Bright flare from 4C 21.35
0.1 nG IGMF
EBL of Dominguez et al. 2011

Caveat: Other astrophysical processes, e.g. UHECR cascades, can also lead to spectral hardening

Left figure: Doro et al., Astropart. Phys. 43, 189; arXiv:1208.5356
Right figure: Sanchez-Conde et al., in prep., adapted from Ringwald, 2012, arXiv:1209.2299
A simulated GRB (E > 30 GeV)

CTA Simulation of GRB 080916C seen by GBM + LAT

30 s for slew

More details on LIV in talk tomorrow by Nepomuk Otte

from
Gamma-Ray Burst Science in the Era of Cherenkov Telescope Array
(Astroparticle Physics special issue article)
Susumu Inoue et al.
White Papers Contributed to Snowmass Study

Tests of Lorentz Invariance Violation to Probe Quantum Gravity
Prospects for Indirect Detection of Dark Matter with CTA
Fundamental Physics from Charged Particle Measurements with the Cherenkov Telescope Array
The Hunt of Axionlike Particles with the Cherenkov Telescope Array
The Extragalactic Background Light (EBL): A Probe of Fundamental Physics and a Record of Structure Formation in the Universe
Particle Acceleration in Relativistic Jets
Search for Dark Matter Sub-Halos in the Gamma-ray Band
The Impact of Astrophysical Particle Acceleration on Searches for Beyond-the-Standard-Model Physics
 Gamma Ray Signatures of Ultra High Energy Cosmic Ray Line-of-sight Interactions
Key CTA Contributions to the Cosmic Frontier

- 10-fold improved sensitivity for VHE studies of the cosmos
 - “Routine” astrophysics is the foundation for recognizing new fundamental physics
- Sensitive searches for dark matter in its cosmic home
- Tests of cosmology
 - Extragalactic background light (EBL)
 - Intergalactic magnetic fields (IGMF)
- γ-ray propagation over cosmic distances
 - Tests of Lorentz invariance (LIV)
 - Search for signatures of axion-like particles (ALP)