MICROBOONE PHYSICS

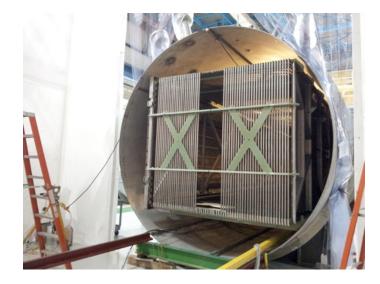
Ben Carls Fermilab

Outline

- The detector and beam
 - -MicroBooNE TPC
 - -Booster and NuMI beams at Fermilab
- Oscillation physics
 - -Shed light on the MiniBooNE low energy excess
- Low energy neutrino cross sections
- Non-accelerator topics
 - -Supernova neutrino detection
 - -Proton decay backgrounds

MicroBooNE Detector

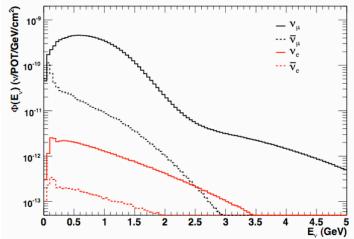
- 60 ton fiducial volume (of 170 tons total) liquid Argon TPC
- TPC consists of 3 planes of wires; vertical Y, ±60° from Y for U and V
- Array of 32 PMTs sit behind TPC wires
- Purification system capable of achieving < 100 ppt O₂ and < 1 ppm N₂
- Ready for neutrino data in 2014



See talk by Sarah Lockwitz in the Accelerators, Detectors, and Computing Session

MicroBooNE Detector

- MicroBooNE has several R&D goals
 - -Cold frontend electronics which will reside inside the vessel
 - —2.5 m drift distance across the TPC, longest done in a beam experiment
 - Gas purge of cryostat instead of vessel evacuation



See talk by Sarah Lockwitz in the Accelerators, Detectors, and Computing Session

The Booster Neutrino Beam

- Driven by 8 GeV protons hitting a beryllium target for a mean neutrino energy of 0.8 GeV
- Will provide MicroBooNE with similar L/E (oscillation parameter experiments set) to that of MiniBooNE
- Well known beam, already run for a decade, will lead to a few quick results

The NuMI Beam

- MicroBooNE will also be getting beam from FNAL's Main Injector neutrino beam
- 120 GeV protons are directed onto a carbon target, produces an off-axis beam for MicroBooNE, potentially useful for NOvA

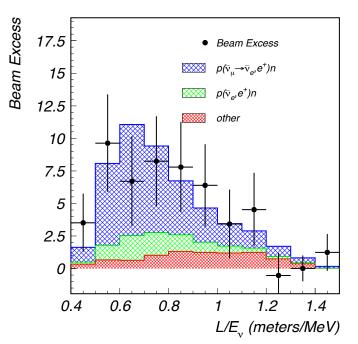
	BNB	NuMI
Total	143,000	60,000
v _µ CCQE	66,000	25,000
NC π^0	8,000	3,000
v _e CCQE	400	1,000
POT	6×10 ²⁰	8×10 ²⁰

BNB NuM

POT – protons on target

CCQE - charged current quasielastic

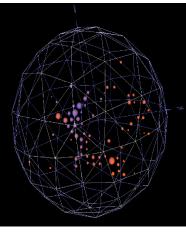
Oscillation physics


LSND Anomaly

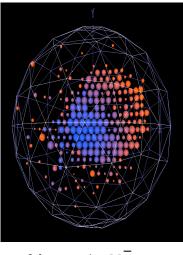
- The motivation for MicroBooNE begins with LSND
- LSND observed a $\bar{\nu}_{\rm e}$ appearance signal in a $\bar{\nu}_{\rm \mu}$ beam
- Excess of 87.9 ± 23.2, for 3.8σ

$$P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) = \sin^{2}(2\theta)\sin^{2}\left(\frac{1.27L\Delta m^{2}}{E}\right)$$
$$= 0.245 \pm 0.081\%$$

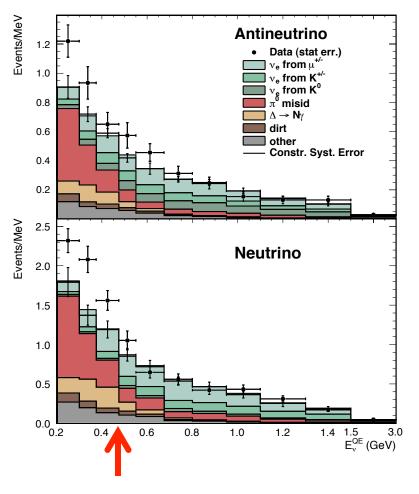
L/E – defined by experimental setup θ – mixing angle Δm^2 – oscillation frequency



From LSND to MiniBooNE

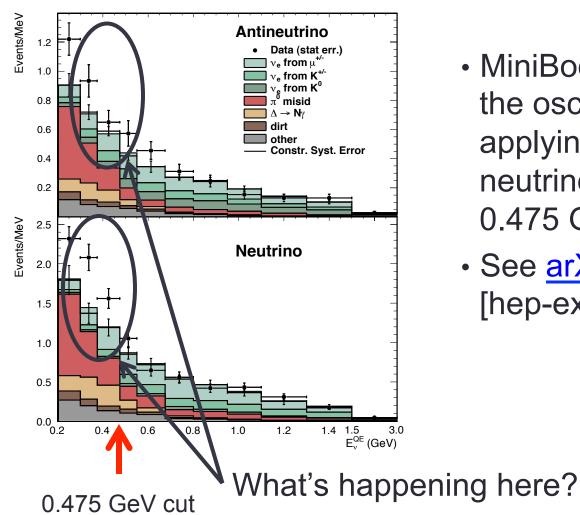

- MiniBooNE, a mineral oil based Cherenkov detector, was designed to observe or refute the LSND
- Looked for $\nu_{\rm e}\, {\rm in}$ a $\nu_{\mu}\, {\rm beam}$ off of the Booster Neutrino Beam
- MiniBooNE, like all Cherenkov detectors, had trouble distinguishing π^0 to $\gamma\gamma$ (background) from a single electron (signal)

$$v_{\mu}n \rightarrow v_{\mu}n\pi^{0}(\pi^{0} \rightarrow \gamma\gamma)$$


$$v_e n \rightarrow e^- p$$

 $v_{\mu}n \rightarrow \mu p$

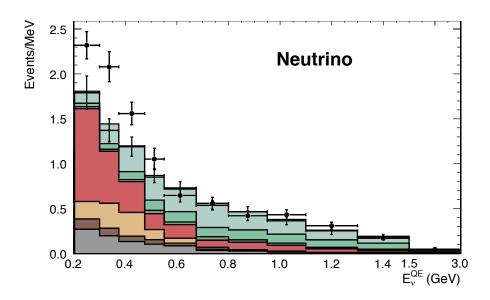
B. Carls, Fermilab

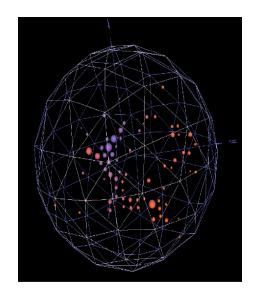

MiniBooNE low energy excess

- MiniBooNE carried out the oscillation analysis, applying a cut on neutrino energies below 0.475 GeV
- See <u>arXiv:1303.2588</u> [hep-ex] for details

0.475 GeV cut

MiniBooNE low energy excess



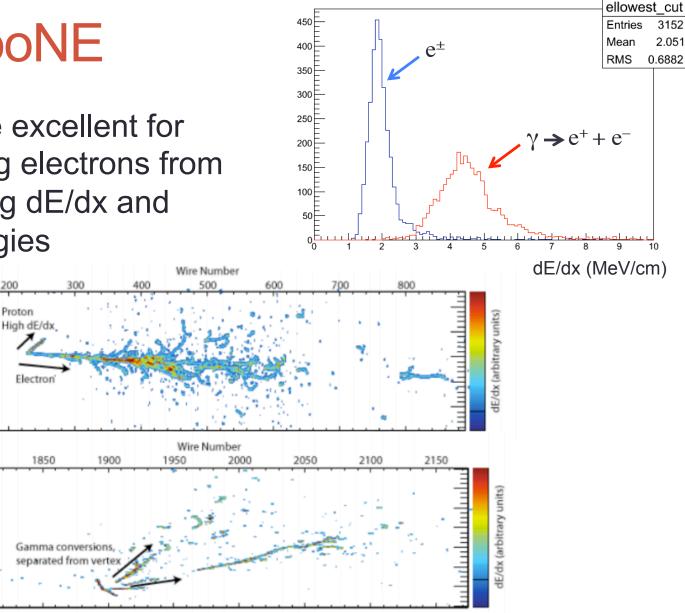

- MiniBooNE carried out the oscillation analysis, applying a cut on neutrino energies below 0.475 GeV
- See <u>arXiv:1303.2588</u> [hep-ex] for details

MiniBooNE Excess

- MiniBooNE sees an excess in neutrino and antineutrino modes, 240.0 \pm 62.9 events for 3.8 σ
- Excesses appear in the region 0.2-0.475 GeV, where NC π^{0} and processes producing a single photon dominate
- Problem is, a photon looks just like an electron!

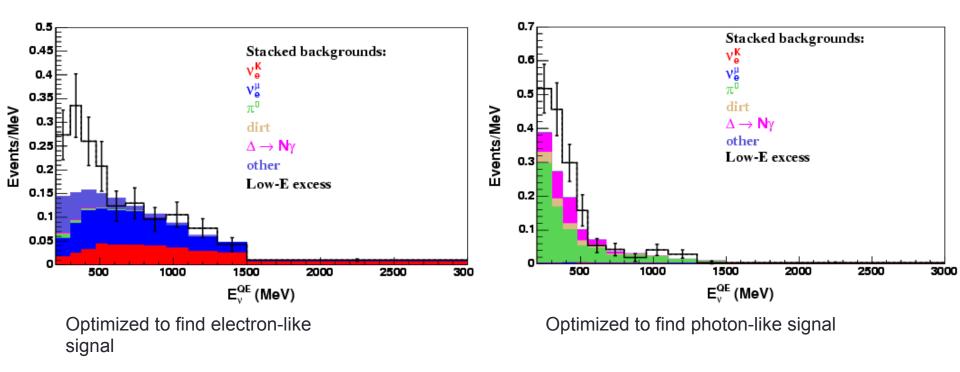
MicroBooNE

2700


2300

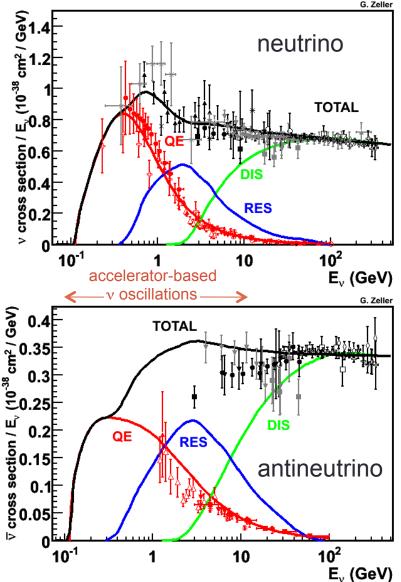
1600 1400

ジェ1000 と 800


600 400 200

LArTPCs are excellent for distinguishing electrons from photons using dE/dx and event topologies

MicroBooNE Physics

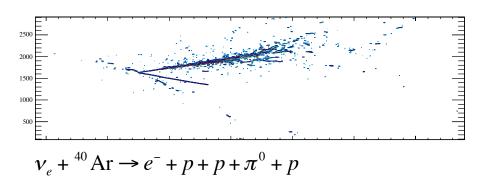

MicroBooNE Oscillation Analysis

MicroBooNE Physics

Cross section physics

Neutrino Cross Sections

- Has recently received a lot of attention, crucial for ν oscillations
- v cross sections are historically not well known in the energy range we care about
- Nuclear effects are far more complex than we originally thought, forcing a dramatic change in our thinking recently
- In the 1 GeV range, driven by results from MiniBooNE, MicroBooNE will probe the exact same energy region with a more capable detector

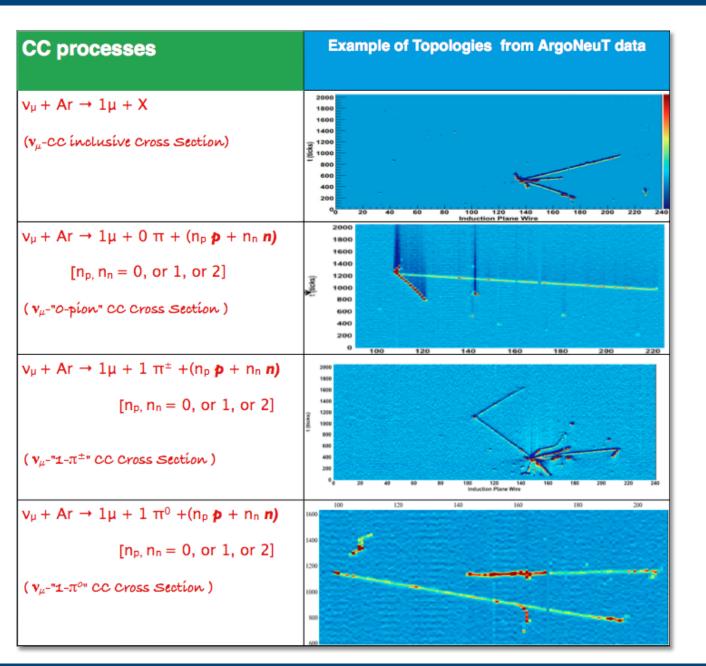

MicroBooNE Physics

Cross sections in MicroBooNE

- MicroBooNE will make the first
 v cross section measurements in argon at ~1 GeV
 - LArTPC provides phenomenal resolution for position and momentum
 - Possible to reconstruct complicated topologies
 - Able to see protons with kinetic energies as low as 20 MeV
 - High statistics will make measurements systematically limited
- After ~10 years of operation, FNAL neutrino Booster beam has a well characterized flux which will allow expeditious results from MicroBooNE (Phys. Rev. D79, 072002 (2009))

$$v_{\mu} + {}^{40}\operatorname{Ar} \rightarrow \mu^{-} + p + p + n + p$$

simulated neutrino interactions in MicroBooNE



Expected Statistics

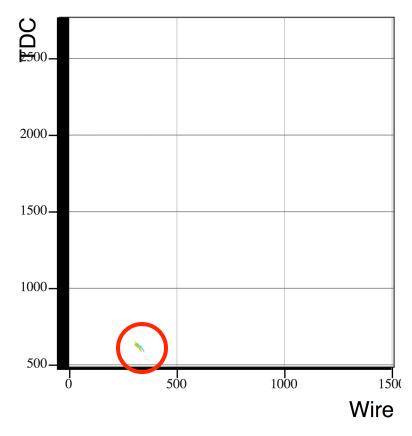
production mode	# events
${ m CC} \ { m QE} \ (u_\mu n ightarrow \mu^- p)$	60,161
NC elastic $(\nu_{\mu} N \rightarrow \nu_{\mu} N)$	19,409
CC resonant π^+ $(\nu_{\mu} N \rightarrow \mu^- N \pi^+)$	25,149
CC resonant $\pi^0 \ (\nu_\mu n \to \mu^- p \pi^0)$	6,994
NC resonant π^0 $(\nu_\mu N \to \nu_\mu N \pi^0)$	7,388
NC resonant $\pi^{\pm} (\nu_{\mu} N \rightarrow \nu_{\mu} N' \pi^{\pm})$	4,796
$\operatorname{CC}\operatorname{DIS}(u_\muN o\mu^-X,W>2\;\operatorname{GeV})$	1,229
NC DIS $(\nu_{\mu} N \rightarrow \nu_{\mu} X, W > 2 \text{ GeV})$	456
NC coherent π^0 $(\nu_\mu A \to \nu_\mu A \pi^0)$	1,694
CC coherent π^+ $(\nu_{\mu} A \rightarrow \mu^- A \pi^+)$	2,626
NC kaon $(\nu_{\mu} N \to \nu_{\mu} K X)$	39
CC kaon $(\nu_{\mu} N \to \mu^{-} K X)$	117
other $ u_{\mu}$	3,678
total ν_{μ} CC	98,849
total ν_{μ} NC+CC	133,580
$\nu_e \ \mathrm{QE}$	326
$ u_e { m CC}$	657

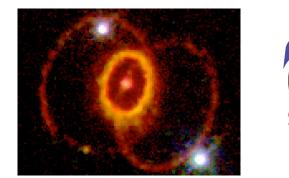
MicroBooNE will more precisely examine the final states produced in these neutrino interactions by exploiting the capabilities of LAr and building off of the experience gained in **MiniBooNE** (same flux) and **ArgoNeuT** (same detector technology)

(rates assuming 6.6 ×10²⁰ POT)

A Few Examples

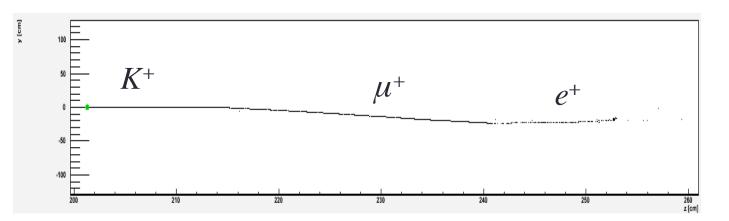
Examples of event topologies MicroBooNE will measure


(event displays are actual data from ArgoNeuT)


MicroBooNE Physics

Non-accelerator topics

Supernova Neutrinos

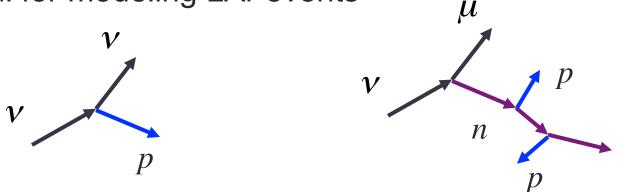

- Supernova neutrinos will be observable through data buffering and a trigger from SNEWS
- MicroBooNE would see 10-20 neutrino from a galactic supernova
- 20 neutrinos total (from all detectors in the world) were observed from 1987a

Proton decay backgrounds

- Many GUTs predict the proton decay of $p^+ \rightarrow K^+ \nu$
- MicroBooNE is too small to be sensitive to proton decay, multi-kiloton, underground LArTPCs will be
- However, we can begin studying backgrounds for the decay $p^+ \rightarrow K^+ v$
- Possible to distinguish *K* from *p* using dE/dx

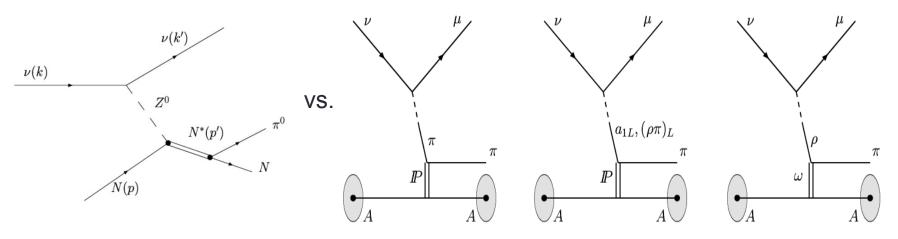
Summary

- We have several physics goals
 - -Determine the origin of the MiniBooNE low energy excess
 - -Measure a suite of low energy neutrino cross sections
 - -Supernova neutrinos
 - -Proton decay background studies
- MicroBooNE will begin taking data in 2014
- Stay tuned!


Backup

Proton ΔS

• MicroBooNE will have sensitivity to Δ S, fraction of proton spin carried by the strange quark


$$R_{NC/CC} = \frac{\sigma(\nu p \to \nu p)}{\sigma(\nu n \to \mu^- p)}$$

- Potential to shed light on proton spin
- Useful for spin-dependent WIMP measurements
- Helpful for modeling LAr events

Coherent pion production

- MicroBooNE's detector capabilities make searching for coherent pion production feasible
- Coherent production has two standout features
 - Lack of debris from nuclear breakup (coherent production leaves nucleus intact)
 - -Forward going lepton and pion in the final state

