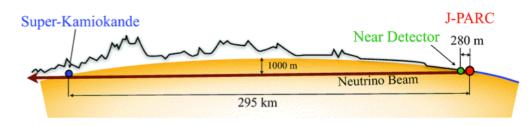
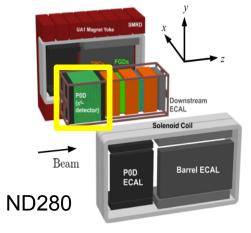
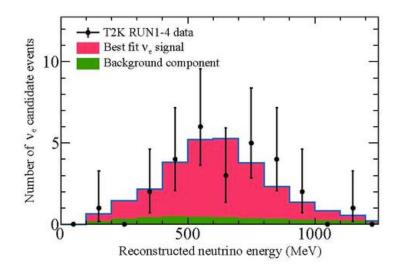


Measurement of Charged-Current v_e On-Water Interaction Rate with the π^0 Detector at T2K

DPF 2013 Santa Cruz

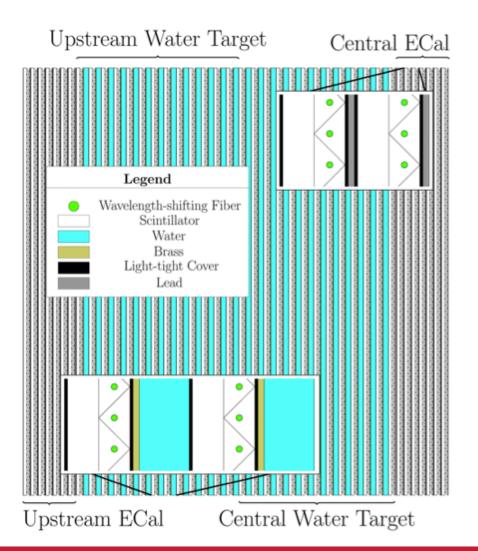

Jeanine Adam Stony Brook University 15th August 2013




The T2K Experiment

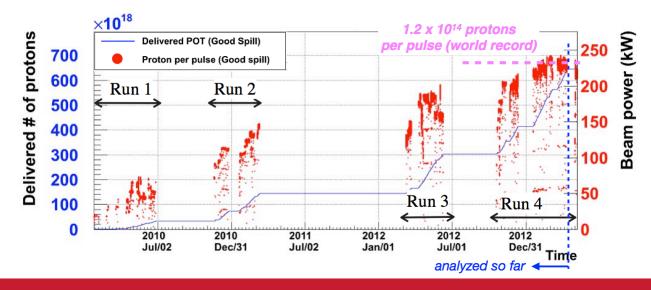
• T2K is a long-baseline neutrino oscillation experiment designed to observe v_e appearance in a v_u beam

- High purity v_{μ} beam is produced at J-PARC
- The near detector (ND280) measures unoscillated neutrino spectrum (280m)
- Neutrinos after oscillation are detected with the Super-Kamiokande detector (295km)
- Presented observation (7.5σ) of ν_e appearance at the EPS-HEP conference 2013



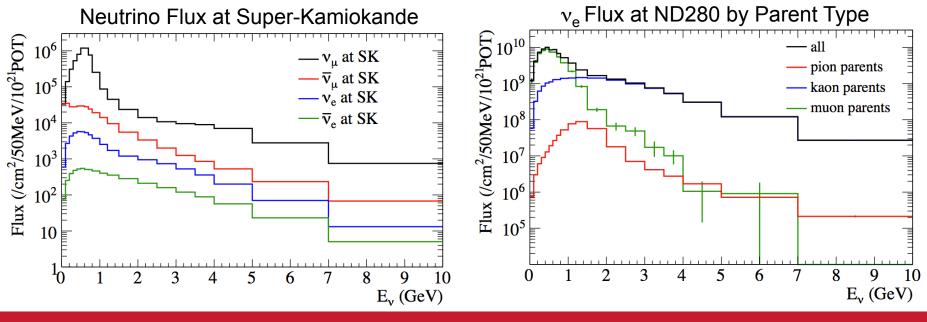
The π^0 Detector (P0D)

- The P0D is a layered tracking/ sampling calorimeter with scintillators, water targets, and absorber materials
- Triangular scintillator bars for improved position resolution
- Water targets are drain-able allowing on-water cross section measurements
- Primary goal is to constrain v_e appearance background:
 - Neutral-current π⁰ rate
 - v_e contamination in the beam



P0D v_e **On-Water Measurement**

- The v_e interaction rate on-water hasn't been measured before
- A measurement of high-energy v_e rate with P0D water-in configuration was presented at APS 2012 (based on Run 1+2 water-in data)
- In the meanwhile, T2K collected enough data with P0D water-in and water-out configuration to perform an on-water measurement (based on Run 1-4 data):
 - Water-in: 2.64 × 10²⁰ p.o.t.
 - Water-out: 3.31 × 10²⁰ p.o.t.

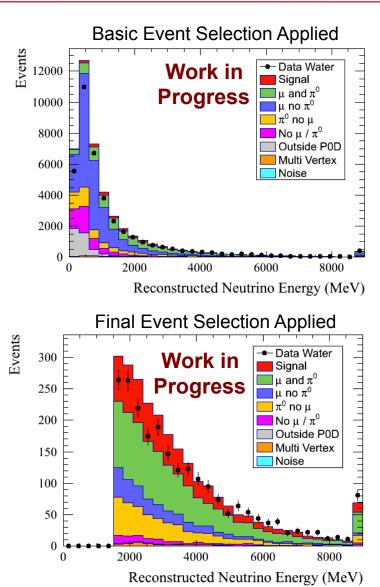


P0D High-Energy v_e Measurement Motivation

- The 30GeV proton beam of J-PARC produces pions and kaons, where π^+ and K^+ are selected by three horns
- Two sources for v_e contamination in v_{μ} beam arriving at Super-Kamiokande (SK):

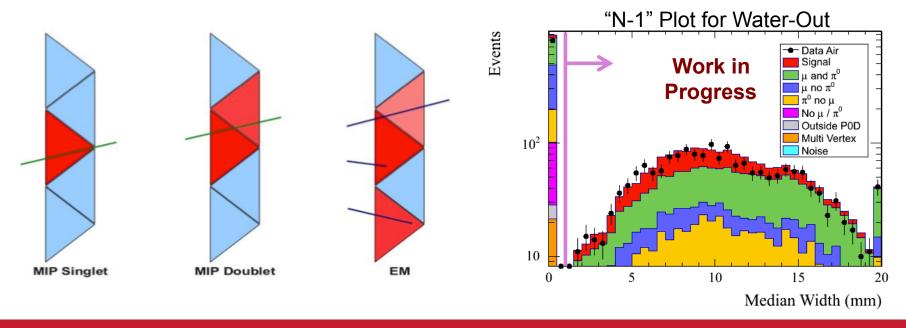
 $\pi^+ \to \nu_\mu + \mu^+ \to e^+ + \nu_e + \bar{\nu}_\mu \qquad K^+ \to \pi^0 + e^+ + \nu_e$

- Above 1.5GeV, the v_e contamination is predominantly from kaon decays



Event Selection

- Basic event selection:
 - Data quality and beam quality checks
 - Basic reconstruction quality checks
 - Fiducial vertex
- Selecting high energy charged-current v_e interactions:
 - Particle angle with respect to beam axis < 45°
 - Reconstructed neutrino energy > 1.5 GeV
 - Width based particle ID to suppress muons
 - Reject events with more than 2 reconstructed electromagnetic showers



Width Based Particle ID

- The design of the P0D with high density materials (brass, lead) causes electrons to shower
- Electromagnetic particles in the P0D are therefore generally wider than MIP
- In addition, MIP hits in a scintillator layer are generally adjacent
- Reject narrow particle tracks to suppress muons in the selected event sample

Selected Events

Looking at events passing all the selection criteria

		usrk in						
		Work in Progress	$N^{MC}_{ m Signal}$	$N_{ m Background}^{MC}$	$N_{ m Total}^{MC}$	Data		
		Water-In	634.7 ± 9.1	1835.4 ± 16.0	2470.0 ± 18.4	2273		
		Water-Out	495.3 ± 7.8	1429.5 ± 13.8	1924.8 ± 15.9	1785		
			sta	tistical errors du	e to limited MC s	tatistics		
	S	elected Events	for Water-In		Selected Events for Water-Ou			
Events	300	Work i	∩ _← Data Water		Work in	Data Air		
щ	250	Progres	S μ and π^0 μ no π^0		Progres	S μ and π^0 μ μ no π^0 $-$		
	200	•	<u>π⁰ no μ</u> No μ / π ⁰			<u>π⁰ no μ</u> No μ / π ⁰		
	150		Outside P0D Multi Vertex Noise			Outside P0D Multi Vertex Noise		
	100		INDISE					
	50			50				
	0							
	2000	4000	6000 8000	2000	4000 6	6000 8000		
		Reconstructed N	leutrino Energy (M	eV)	Reconstructed Ne	utrino Energy (MeV)		

PID Sideband

Using events failing the width based ID selection to constrain the background

	•	Nork in progress	$N_{ m Signal}^{MC}$	$N^{MC}_{ m Background}$	$N_{ m Total}^{MC}$	Data		
		Water-In	60.2 ± 2.8	1266.6 ± 13.2	1326.8 ± 13.5	1284		
		Water-Out	49.3 ± 2.5	840.7 ± 10.5	890.0 ± 10.8	805		
		statistical errors due to limited MC statistics						
	PID Sideband for Water-In				PID Sideband for Water-Out			
Events	400 300 200 100 0	Work in Progress	Signal μ and π^0 μ no π^0 π^0 no μ No μ / π^0 Outside POE Multi Vertex Noise		Work	Signal		
	2000		6000 8000 autrino Energy (N			6000 8000		
		Reconstructed IN	eutrino Energy (N	10 V)	Reconstructed N	Neutrino Energy (MeV)		

Charged-Current v_e Interactions in Data

 Subtracting scaled Monte Carlo background from data samples collected during water-in ("water") and water-out ("air") configuration:

$$egin{aligned} N_{ ext{CC}
u_e, ext{water}}^{Data} &= D_{ ext{water}} - g_{ ext{water}} \cdot B_{ ext{water}} \ N_{ ext{CC}
u_e, ext{air}}^{Data} &= D_{ ext{air}} - g_{ ext{air}} \cdot B_{ ext{air}} \end{aligned}$$

- Where g_{water} and g_{air} are the scaling factors obtained from the PID sideband
- The data/MC ratios for the water-in and water-out configuration is then given by:

$$egin{aligned} R_{ ext{water}} &= rac{N_{ ext{CC}
u_e, ext{water}}^{Data}}{S_{ ext{water}}} \ R_{ ext{air}} &= rac{N_{ ext{CC}
u_e, ext{air}}^{Data}}{S_{ ext{air}}} \end{aligned}$$

Extraction of On-Water CC v_e Interactions

 Determine the on-water data event rate by subtracting the event rates measured with P0D water-in and water-out configuration:

$$N_{ ext{on-water}}^{Data} = D_{ ext{water}} - rac{\epsilon_{ ext{water}} \cdot ext{POT}_{ ext{water}}}{\epsilon_{ ext{air}} \cdot ext{POT}_{ ext{air}}} \cdot D_{ ext{air}}$$

- Different efficiencies and different collected POT for water-in and water-out configuration are taken into account
- Determine the number of on-water charged-current v_e events in the data sample by subtracting the Monte Carlo predicted background:

$$N_{ ext{CC}
u_e, ext{on-water}}^{Data} = N_{ ext{on-water}}^{Data} - g_{ ext{water}} \cdot B_{ ext{on-water}}$$

with g_{water} the scaling factor obtained from the PID sideband

• The data/MC ratio is then given by:
$$R_{\text{on-water}} = \frac{N_{\text{CC}\nu_e,\text{on-water}}^{Data}}{S_{\text{on-water}}}$$

Systematic Uncertainties

 A wide range of potential systematic uncertainties have been investigated or are currently under investigation:

vin of Systematic Uncertainty for Data/MC Ratio	Water-In	Water-Out	On-Water
MC Statistics	0.04	0.04	0.11
PØD Mass	0.01	0.01	0.01
PØD Fiducial Volume	0.03	0.06	0.02
PØD Alignment	< 0.01	< 0.01	< 0.01
Energy Scale	0.15	0.12	
Particle Direction Reconstruction	0.01	0.02	Work
Neutrino Energy Threshold	0.15	0.06	In
Shower Reconstruction	0.09	0.08	Progress
Other Reconstruction	0.02	0.02	
Flux and Cross Sections	0.19	0.21	0.27

Systematic Uncertainties

- The largest systematic uncertainties coming from:
 - Flux and Cross Section Uncertainties:
 - Determined by re-weighting Monte Carlo using results of other neutrino experiments
 - Standard procedure also used for T2K oscillation results
 - Energy Scale and Energy Reconstruction:
 - Studied the effect of varied material densities in the Monte Carlo, time dependent variations in data, impact of hot channels in data
 - This systematic uncertainty will be reduced in future
 - Shower Reconstruction:
 - Systematic uncertainty in shower reconstruction due to noise in data that is not simulated in Monte Carlo
 - This systematic uncertainty will be reduced in future

Results and Outlook

 The previously described analysis results in the following data/MC ratio for charged-current v_e interactions for the water-in and water-out configuration:

 $Data/MC(water) = 0.78 \pm 0.11(stat) \pm 0.04(MC stat) \pm 0.23(det) \pm 0.19(flux/xsec)$

 $Data/MC(air) = 0.99 \pm 0.13(stat) \pm 0.04(MC stat) \pm 0.17(det) \pm 0.21(flux/xsec)$

- The obtained data/MC ratios are consistent with 1 within statistical and systematic uncertainties
- Currently, the stability of the on-water interaction extraction method is under investigation and the detector systematics for the on-water data/MC ratio are being determined