Results on new particles from

Roberto Mussa INFN Torino

DPF, Santa Cruz, August 2013

Outline

Discovery of charged bottomonia

See Santel's talk

DPF 2013, Santa Cruz, 8/16/2013

Discovery of charged charmonium : Z (4430)

First charged charmonium observed by Belle in $B \rightarrow K (\pi \psi')$, Babar controversy: data FULLY COMPATIBLE with Belle, but different interpretation: interference with K* resonances?

DPF 2013, Santa Cruz, 8/16/2013

Z_{c} (4050) and Z_{c} (4250): Babar vs Belle again

Two more charged charmonia observed by Belle in $B \rightarrow K(\pi \chi_{c1})$, disconfirmed by Babar: interference from K* resonances?

New: Z (4430) quantum numbers

ArXiV:1306.4894 , $Ldt = 711 \text{ fb}^{-1} \text{ at } Y(4S)$

Full amplitude analysis in 4D: Dalitz Plot + angular distribution

$$\begin{split} \mathcal{B}(\bar{B}^0 \to \psi' K^- \pi^+) &= (5.80 \pm 0.36) \times 10^{-4}, \\ \mathcal{B}(\bar{B}^0 \to \psi' K^* (892)) &= (5.20^{+0.28+1.45}_{-0.20-0.39}) \times 10^{-4}, \\ \mathcal{B}(\bar{B}^0 \to Z(4430)^+ K^-) \times \mathcal{B}(Z(4430)^+ \to \psi' \pi^+) &= \\ &\qquad (3.5^{+1.2+0.4}_{-0.8-1.3}) \times 10^{-5} \quad \text{for } J^P = 1^+ \text{ or} \\ &\qquad (1.5^{+0.7+0.7}_{-0.5-0.2}) \times 10^{-5} \quad \text{for } J^P = 0^-, \end{split}$$

				MF(ψ',π), GeV-/c'	
J^P	0-	1-	1+	2^{-}	2+
Mass, MeV/c^2	4470 ± 20	4482 ± 4	4500 ± 12	4545 ± 2	4367 ± 2
Width, MeV	139 ± 36	10.9 ± 0.3	126 ± 20	11.2 ± 0.6	9.1 ± 0.6
Significance	4.4σ	1.2σ	6.1σ	2.3σ	2.6σ
9-1 -					÷

DPF 2013, Santa Cruz, 8/16/2013

Discovery of charged charmonia: Zc(3900)

Hints of deviations from phase space were observed by CLEO in data at 4170 MeV PRL107,041803 (2011)

Belle ISR data at Y(4260) confirmed this in the e+e- \rightarrow J/ $\psi \pi\pi$ channel : this suggested a dedicated run on Y(4260) peak at BES-III (December 2013)

4.6

E_{cm} (GeV)

4.8

5

5.2

 $M(h_c\pi)$ from $e^+e^- \rightarrow \pi^+\pi^-h_c$ at 4170

42

44

80

70

60

50

40

30

20

10

0

38

رdd) (ψ/L⁻π⁻J/ψ)

R.Mussa, New particles from Belle

5.4

REL I

Discovery of charged charmonia: Zc(3900)

Belle: 927 fb⁻¹ of ISR data at $\Upsilon(nS)$ energy

Phys.Rev.Lett. 110 (2013) 252002

- Mass = (3894.5±6.6±4.5) MeV
- Width = (63±24±26) MeV
- > Fraction = $(29.0\pm8.9)\%$ (stat. error only)

BES-III: 525 pb⁻¹ @ Y(4260) peak energy

Phys.Rev.Lett. 110 (2013) 252001

- Mass = (3899.0±3.6±4.9) MeV
- Width = (46±10±20) MeV
- Fraction = (21.5±3.3±7.5)%

Parabottomonia: new paths to the η_{h}

The high yield of $h_b(1,2P)$: $N[h_b(1P)] = (50.4 \pm 7.8 + 4.5)_{-1.9} \times 10^3$ $N[h_b(2P)] = (84.4 \pm 6.8 + 23)_{-10} \times 10^3$ opens new perspectives to study the $\eta_b(1,2S)$

Expected E1 rates: Godfrey&Rosner, PRD66 014012 (2002) $\mathbf{h}_{b}(1P) \rightarrow \gamma \boldsymbol{\eta}_{b}(1S) = 41\%$ $\mathbf{h}_{b}(2P) \rightarrow \gamma \boldsymbol{\eta}_{b}(1S) = 13\%$ $\mathbf{h}_{b}(2P) \rightarrow \gamma \boldsymbol{\eta}_{b}(2S) = 19\%$

Rediscovery of η_b

Babar 2008:

Rediscovery of η_{b}

h_b(1P) yield, 10³ / 10 MeV/c² ; 5 5 5 01 ; 01 Babar 2008: (a) Entries/ (0.005 GeV) $h_{b}(1P) \rightarrow \gamma \eta_{b}(1S)$ $\chi_{b}(2P) \rightarrow \gamma Y(1S)^{(b)}$ $\gamma_{\rm ISR}$ Y(1S) **/(3**S)→γη_ь (<u>1</u>S) 2000 0 $h_b(2P)$ yield, 10³ / 10 MeV/c² Entries / (0.005 GeV) -2000 (b) h_b (2P)→γ $η_b$ (1S) 0.6 0.7 0.8 0.9 3 0.5 1.1 E_{γ} (GeV) $\chi_{b}(1P) \rightarrow \gamma Y(1S)$ 6000 γ_{ISR} Y(1S) 2 4000 **Υ(2S)**→γη_ь (1S) 2000 9.2 8.8 9 0.4 0.5 0.6 0.7 0.8 3

PRL 101,071801(2008) PRL 103,161801(2009)

PRL 109, 232002 (2012)

DPF 2013, Santa Cruz, 8/16/2013

R.Mussa, New particles from Belle

 E_{γ} (GeV)

9.8

9.6

9.4

BELLE

PRL 109, 232002 (2012) Evidence of $\eta_{h}(2S)$ Significance : 4.2 σ , including all systematics h_b(2P) yield, 10³ / 10 MeV/c² $Ldt = 121.4 \text{ fb}^{-1}(5S) + 12 \text{ fb}^{-1}(scan)$ 30 20 $h_{L}(2P)$ 10 0 9.8 9.9 10.1 9.7 1() $M_{miss}^{(n)}(\pi^+\pi^-\gamma), GeV/c^2$ $m_{\eta_b(2S)} = 9999.0 \pm 3.5^{+2.8}_{-1.9} \text{ MeV/c}^2$ B.F. $[h_b(2P) \rightarrow \eta_b(2S)\gamma] = (47.5 \pm 10.5^{+6.8}_{-7.7})\%$

DPF 2013, Santa Cruz, 8/16/2013

Search for $\eta_{b}(2S)$ in exclusive modes

Exclusive reconstruction of 26 decay modes: $2(\pi^{+}\pi^{-}), 3(\pi^{+}\pi^{-}), 4(\pi^{+}\pi^{-}), 5(\pi^{+}\pi^{-}), K^{+}K^{-}\pi^{+}\pi^{-}, K^{+}K^{-}2(\pi^{+}\pi^{-}), K^{+}K^{-}3(\pi^{+}\pi^{-}), K^{+}K^{-}4(\pi^{+}\pi^{-}), 2(K^{+}K^{-}), 2(K^{+}K^{-}), K^{+}K^{-}9\overline{p}, 2(\pi^{+}\pi^{-}), 2(K^{+}K^{-}), 2(K^{+}K^{-}), \pi^{+}\pi^{-}p\overline{p}, 2(\pi^{+}\pi^{-})p\overline{p}, 3(\pi^{+}\pi^{-})p\overline{p}, 4(\pi^{+}\pi^{-})p\overline{p}, \pi^{+}\pi^{-}K^{+}K^{-}p\overline{p}, 2(\pi^{+}\pi^{-})K^{+}K^{-}p\overline{p}, 3(\pi^{+}\pi^{-})K^{+}K^{-}p\overline{p}, K^{0}_{S}K^{\pm}\pi^{\mp}, K^{0}_{S}K^{\pm}\pi^{\mp}, K^{0}_{S}K^{\pm}\pi^{\mp}, \pi^{-}, K^{0}_{S}K^{\pm}\pi^{\mp}2(\pi^{+}\pi^{-}), K^{0}_{S}K^{\pm}\pi^{\mp}3(\pi^{+}\pi^{-}), 2K^{0}_{S}(\pi^{+}\pi^{-}), 2K^{0}_{S}2(\pi^{+}\pi^{-}), 2K^{0}_{S}3(\pi^{+}\pi^{-}).$

is inconsistent with Belle result from $h_b(2P) \rightarrow \eta_b(2S)\gamma$ M = 9999.0 ±3.5 $^{+2.8}_{-1.9}$ MeV

DPF 2013, Santa Cruz, 8/16/2013

Search for $\eta_{b}(2S)$ in exclusive modes

Exclusive reconstruction of 26 decay modes: $2(\pi^{+}\pi^{-}), 3(\pi^{+}\pi^{-}), 4(\pi^{+}\pi^{-}), 5(\pi^{+}\pi^{-}), K^{+}K^{-}\pi^{+}\pi^{-}, K^{+}K^{-}2(\pi^{+}\pi^{-}), K^{+}K^{-}3(\pi^{+}\pi^{-}), K^{+}K^{-}4(\pi^{+}\pi^{-}), 2(K^{+}K^{-}), 2(K^{+}K^{-}), 7(K^{+}K^{-}), 7(K^{+}K^{-}$

The claim of : Dobbs et al **PRL109 (2012) 082001** (analysis of CLEO data by Seth's group)

@ M = 9974.6 $\pm 2.3 \pm 2.1$ MeV

IS DISCONFIRMED BY BELLE:

Using our record data sample:

- on peak 25 fb⁻¹ (157.8M Y(2S) decays, 16x CLEO)
- bkg: 87 fb⁻¹ @ 10.52 GeV

We set the UL @ 90% CL: $< 4.9 \times 10^{-6}$ (including syst.)

DPF 2013, Santa Cruz, 8/16/2013

Spin averaged 1P-1S splitting seems not to depend on scale: only 1% relative difference with charmonium

Charmonium D wave

PRL111,032001(2013)

X(3872) yield : -0.9±5.1 events

DPF 2013, Santa Cruz, 8/16/2013

Charmonium D wave

Evidence of the long sought ${}^{3}D_{2}$ state of charmonium J=2 partner of the $\psi(3770)$

R.Mussa, New particles from Belle

Search for H dibaryon

Observation (ARGUS,CLEO) of : - enhanced production of hyperons in bottomonium decays - sizable BR (~3x10-5) of production of antideuteron in Y(1,2S) decays Suggested the idea to search for exotic 6 quark states, such as the H dibaryon , suggested by Jaffe in 1977. Controversial claims from expts. E522 and STAR.

Belle has searched for H dibaryon in the following channels:

- Λπp (+cc)

$$-\Lambda\Lambda$$
 (+cc)

[published:PRL 110, 222002 (2013)]

- Ξ p (+cc)

[aiming for a longer paper including also pentaquark searches, inclusive production of Ξ_c and Ξ^* from Y decays]

Summary

In the last years, Belle has discovered a large number of conventional and exotic states, accumulating increasing evidences that hadrons are not simply made of 2 (mesons) or 3 (baryons) quarks.

In heavy meson systems, the first hints for the existence of 4 quark states (tetraquarks or hadro molecules) came from B decays, the controversy between Belle and Babar on the interpretation of the $Z_c(4430)$ is still unsettled.

Belle's new analysis of Z_{c} (4430) quantum numbers favors $J^{P}=1^{+}$

More solid evidence of 4-quark states comes from Y(4260) and Y(10860) where Zc and Zb states provide new pathways to bound quarkonia: - $Z_b(10510,10560)$ led to Belle's discovery of 3 missing parabottomonia, $h_b(1,2P)$ and $\eta_b(2S)$, and to the best mass determination of $\eta_b(1S)$

- a similar mechanism seems at work in charmonium, where Zc states at 3900 (Belle and BES-III) and 4020 (BES-III) mediate transitions towards J/ψ and $h_c(1P)$.

After completing the low lying S and P wave spectra, Belle is making progress on D-wave states: while searching for partners of X(3872), Belle ran into the long sought ${}^{3}D_{2}$ state of charmonium, decaying to , at a mass of $3823.5\pm2.8 \text{ MeV}/c^{2}$.

Belle does not see any evidence of inclusive production of H-dibaryon

Spectra

Single π recoil in $\Upsilon(5S) \rightarrow h_{b}(1,2P)\&\Upsilon(1,2,3S) : Z_{b}'s !$

10.05 GeV <MM(π⁺π⁻) < 10.10 GeV

9.43 GeV <MM(π+π) < 9.48 GeV

DPF 2013, Santa Cruz, 8/16/2013

R.Mussa, New particles from Belle

X_b(3P) @ LHC

First particle(s) found at LHC! Mass of χ_b (3P) centroid: ATLAS, 4.4 fb⁻¹ @7 TeV M = 10539±4±8 MeV/c²

Confirmed by Tevatron: D0, 1.3 fb⁻¹ @2 TeV $M = 10551\pm14\pm17 \text{ MeV}/c^2$

