

CP Violation & Mixing Results in D decays from Belle: a window on new physics

Alan Schwartz University of Cincinnati

APS DPF Meeting 2013

University of California, Santa Cruz August 15th, 2013

motivation and formalism
 CPV in mixing or interference
 direct CPV
 HFAG fit results

Summary

... CP Violation in D Decays?

 SM rates are very low ⇒ a good place to search for new physics [Most promising: singly Cabibbo-suppressed decays, see Grossman, Kagan, Nir, PRD 75, 036008 (2007)]

• Now established that D⁰/D⁰bar mesons mix ⇒ is there CPV in the mixing? or CPV due to interference between mixed and direct decay amplitudes?

... CPV in D Decays at an e⁺e⁻ machine (Belle/BaBar)?

• Final states with neutral particles (γ , K_s , π^0) can be reconstructed that are difficult/impractical to reconstruct at a hadron machine

• Low backgrounds, high trigger/reconstruction efficiencies, minimal decay time bias, roughly flat acceptance over Dalitz plots, several control samples

The Belle Experiment runs at KEKB:

A. J. Schwartz

CP Violation in D Decays at Belle

Flavor eigenstates are not mass eigenstates:

doubly-Cabibbo-suppressed w/r/t
$$arGamma_D$$

GIM mechanism cancellation

Iong-distance contributions

$$irac{\partial}{\partial t}\left(egin{array}{c} |m{D}^0
angle \ |m{D}^0
angle \end{array}
ight) = \left({
m M} - rac{i}{2}\Gamma
ight) \left(egin{array}{c} |m{D}^0
angle \ |m{D}^0
angle \end{array}
ight)$$

$$\begin{array}{lll} |D_1\rangle &=& p|D^0\rangle + q|\overline{D}{}^0\rangle \\ |D_2\rangle &=& p|D^0\rangle - q|\overline{D}{}^0\rangle \end{array} & \begin{array}{lll} |D_1(t)\rangle &=& |D_1\rangle \, e^{-(\Gamma_1/2 + im_1)t} \\ |D_2(t)\rangle &=& |D_2\rangle \, e^{-(\Gamma_2/2 + im_2)t} \end{array}$$

$$egin{aligned} &\langle f|H|D^0(t)
angle \ = \ e^{-(\overline{\Gamma}/2+i\overline{m})\,t} \,\left\{\cosh\left[(\Delta\gamma/4+i\Delta m/2)t
ight]\mathcal{A}_f + \left(rac{q}{p}
ight)\sinh\left[(\Delta\gamma/4+i\Delta m/2)t
ight]\mathcal{A}_f + \left(rac{q}{p}
ight)\sinh\left[(\Delta\gamma/4+i\Delta m/2)t
ight]\mathcal{A}_f + \cosh\left[(\Delta\gamma/4+i\Delta m/2)t
ight]\mathcal{A}_f + \cosh\left[(\Delta\gamma/4+i\Delta m/2)t
ight]\mathcal{A}_f + \cosh\left[(\Delta\gamma/4+i\Delta m/2)t
ight]\mathcal{A}_f + \cosh\left[(\Delta\gamma/4+i\Delta m/2)t
ight]\mathcal{A}_f + \left(rac{q}{p}
ight)h^2 + \left(rac{q}{p}
i$$

A. J. Schwartz CP Violation in D Decays at Belle DPF 2013 Meeting

$$\begin{split} \frac{N(D^0 \to f)}{dt} &\propto e^{-\overline{\Gamma} t} \left\{ R_D + \left| \frac{q}{p} \right| \sqrt{R_D} \left[y \cos(\phi + \delta) - x \sin(\phi + \delta) \right] (\overline{\Gamma} t) + \left| \frac{q}{p} \right|^2 \frac{(x^2 + y^2)}{4} (\overline{\Gamma} t)^2 \right. \\ &= e^{-\overline{\Gamma} t} \left\{ R_D + \left| \frac{q}{p} \right| \sqrt{R_D} (y' \cos \phi - x' \sin \phi) (\overline{\Gamma} t) + \left| \frac{q}{p} \right|^2 \frac{(x'^2 + y'^2)}{4} (\overline{\Gamma} t)^2 \right\} \\ &\frac{N(\overline{D}{}^0 \to \overline{f})}{dt} \propto e^{-\overline{\Gamma} t} \left\{ \overline{R}_D + \left| \frac{p}{q} \right| \sqrt{\overline{R}_D} y' \cos \phi + x' \sin \phi) (\overline{\Gamma} t) + \left| \frac{p}{q} \right|^2 \frac{(x'^2 + y'^2)}{4} (\overline{\Gamma} t)^2 \right\} \end{split}$$

 $x'\equiv x\cos\delta+y\sin\delta \qquad \qquad y'\equiv y\cos\delta-x\sin\delta$

 $egin{aligned} &|q/p|&CPV ext{ in mixing}\ &A_D \equiv (R_D - \overline{R}_D)/(R_D + \overline{R}_D)&CPV ext{ in the decay amplitude (direct CPV)}\ &\phi&CPV ext{ in mixed/direct interference} \end{aligned}$

No
$$\boldsymbol{CPV}~(\boldsymbol{R_D}=\overline{\boldsymbol{R}}_{\boldsymbol{D}},~|\boldsymbol{q}/\boldsymbol{p}|=1,~\mathrm{and}~\phi=0)$$
:

$${dN(D^0
ightarrow f)\over dt} ~\propto~ e^{-\overline{\Gamma}\,t} \, \left\{ R_D^{} ~+~ \sqrt{R_D^{}}\,y^\prime(\overline{\Gamma}t)^{} ~+~ {(x^{\prime 2}+y^{\prime 2})\over 4}(\overline{\Gamma}\,t)^2
ight\}$$

A. J. Schwartz

CP Violation in **D** Decays at Belle

$$\begin{split} \frac{N(D^0 \to f)}{dt} \propto e^{-\overline{\Gamma} t} & \left\{ R_D + \left| \frac{q}{p} \right| \sqrt{R_D} (y \cos \phi + \delta) \cdot x \sin(\phi + \delta) \right] (\overline{\Gamma} t) + \left| \frac{q}{p} \right|^2 \frac{(x^2 + y^2)}{4} (\overline{\Gamma} t)^2 \\ &= e^{-\overline{\Gamma} t} \left\{ R_D + \left| \frac{q}{p} \right| \sqrt{R_D} (y' \cos \phi - x' \sin \phi) (\overline{\Gamma} t) + \left| \frac{q}{p} \right|^2 \frac{(x'^2 + y'^2)}{4} (\overline{\Gamma} t)^2 \right\} \\ \frac{N(\overline{D}{}^0 \to \overline{f})}{dt} \propto e^{-\overline{\Gamma} t} \left\{ R_D + \left| \frac{p}{q} \right| \sqrt{R_D} y' \cos \phi + x' \sin \phi) (\overline{\Gamma} t) + \left| \frac{p}{q} \right|^2 \frac{(x'^2 + y'^2)}{4} (\overline{\Gamma} t)^2 \right\} \\ & x' \equiv x \cos \delta + y \sin \delta \qquad y' \equiv y \cos \delta - x \sin \delta \\ \hline A_D \equiv (R_D - \overline{R}_D) / (R_D + \overline{R}_D) \qquad CPV \text{ in mixing} \\ & \phi \qquad CPV \text{ in mixed/direct interference} \end{split}$$

No
$$CPV$$
 $(R_D = \overline{R}_D, |q/p| = 1, \text{ and } \phi = 0)$:

$${dN(D^0
ightarrow f)\over dt} ~\propto~ e^{-\overline{\Gamma}\,t} \, \left\{ R_D^{} ~+~ \sqrt{R_D^{}}\,y^\prime(\overline{\Gamma}t)^{} ~+~ {(x^{\prime 2}+y^{\prime 2})\over 4}(\overline{\Gamma}\,t)^2
ight\}$$

A. J. Schwartz

CP Violation in D Decays at Belle DPF 2013 Meeting

"Wrong-sign" $D^{0}(t) \rightarrow K^{+}\pi^{-}$ [Zhang et al., PRL 96, 151801 (2006); Li et al., PRL 94, 071801 (2005)]

Fit for x'², y', |q/p|, $\phi = Arg(q/p)$ $A_{M} = \frac{|q/p|^{2} - |p/q|^{2}}{|q/p|^{2} + |p/q|^{2}}$

$$\begin{aligned} \boldsymbol{x'}^{\pm} &= \left(\frac{1\pm A_M}{1\mp A_M}\right)^{1/4} \left(\boldsymbol{x'}\cos\phi \pm \boldsymbol{y'}\sin\phi\right) \\ \boldsymbol{y'}^{\pm} &= \left(\frac{1\pm A_M}{1\mp A_M}\right)^{1/4} \left(\boldsymbol{y'}\cos\phi \mp \boldsymbol{x'}\sin\phi\right) \end{aligned}$$

 $D^{0}(t) \rightarrow K^{0} \pi^{+} \pi^{-}$ Dalitz plot analysis [Zhang et al., PRL 99, 131803 (2007)]

Fit for x, y, |q/p|, $\phi = Arg(q/p)$

Time-dependent $D^0(t) \rightarrow K^+ K^-, \pi^+ \pi^-$

[Staric arXiv:1212.3478 (2012); Staric et al., PRL 98, 211803 (2007); Abe et al., hep-ex/0308034 (2003)]

Fit for y_{CP} , A_{Γ}

$$2 y_{CP} = (|q/p| + |p/q|) y \cos \phi - (|q/p| - |p/q|) x \sin \phi$$

$$2 A_{\Gamma} = (|q/p| - |p/q|) y \cos \phi - (|q/p| + |p/q|) x \sin \phi$$

A. J. Schwartz

CP Violation in D Decays at Belle

Belle time-dependent $D^0(t) \rightarrow K^+K^-, \pi^+\pi^-$

Staric, arXiv:1212.3478; Staric et al., PRL 98, 211803 (2007).

$$egin{aligned} y_{CP} &= rac{ au(K^-\pi^+)}{ au(K^+K^-)} - 1 \ & A_\Gamma &= rac{ au(\overline{D}{}^{\,0} o K^+K^-) - au(D^0 o K^+K^-)}{ au(\overline{D}{}^{\,0} o K^+K^-) + au(D^0 o K^+K^-)} \end{aligned}$$

Method:

- 1) tag flavor via $D^{*+} \rightarrow D^0 \pi^+$
- 2) determine resolution function from MC/data studies
- 3) do simultaneous binned fit to K^+K^- , $K^-\pi^+$, $\pi^+\pi^-$ samples

CP Violation in D Decays at Belle

Staric, arXiv:1212.3478; Staric et al., PRL 98, 211803 (2007).

Note: as resolution function depends on D^0 CMS angle (θ^*), fit is performed in bins of $\cos \theta^*$

976 fb⁻¹ preliminary:

A. J. Schwartz

CP Violation in D Decays at Belle

Belle time-integrated $D^0 \rightarrow K^+K^-$, $\pi^+\pi^-$

Ko, arXiv:1212.1975; Staric et al., PLB 670, 190 (2008)

(1) tag flavor via $D^{*+} \rightarrow D^0 \pi^+$

Method:

$$\begin{array}{ll} A^f_{CP} \end{array} \equiv \end{array} \frac{\Gamma(D^0 \! \rightarrow \! f) - \Gamma(\overline{D}{}^0 \! \rightarrow \! f)}{\Gamma(D^0 \! \rightarrow \! f) + \Gamma(\overline{D}{}^0 \! \rightarrow \! f)} \\ \\ A^f_{\rm rec} \end{array} = \\ A^f_{CP} + A_{FB} + A^{\pi}_{\varepsilon} \end{array}$$

(2) measure tagging asym. using $D^0 \rightarrow K^+ \pi^-$

 $egin{array}{rll} A_{ ext{tagged}}^{K\pi} &=& A_{CP}^{K\pi} + A_{FB} + A_{arepsilon}^{K\pi} + A_{arepsilon}^{\pi} \ A_{ ext{untagged}}^{K\pi} &=& A_{CP}^{K\pi} + A_{FB} + A_{arepsilon}^{K\pi} \end{array}$

(3) correct for $K^+\pi$ asym. by reweighting $u_{D^0} = 1 - A_{ ext{untagged}}^{K\pi}(p_{D^0}, \cos heta_{D^0})$ $u_{\overline{D}{}^0} = 1 + A_{ ext{untagged}}^{K\pi}(p_{\overline{D}{}^0}, \cos heta_{\overline{D}{}^0})$ Belle preliminary using 976/fb

(4) correct for tagging π + asymmetry by reweighting

 $egin{array}{rcl} w_{D^0} &=& 1 - A^\pi_arepsilon(p_\pi,\cos heta_\pi) \ w_{\overline{D}{\,}^0} &=& 1 + A^\pi_arepsilon(p_\pi,\cos heta_\pi) \end{array}$

A. J. Schwartz

CP Violation in **D** Decays at Belle

DPF 2013 Meeting

10

Belle time-integrated $D^0 \rightarrow K^+K^-$, $\pi^+\pi^-$ (cont'd)

Ko, arXiv:1212.1975; Staric et al., PLB 670, 190 (2008)

$$egin{array}{rll} A_{CP}^f &=& rac{A_{
m rec}^{f,{
m corr}}(\cos heta^*) \ + \ A_{
m rec}^{f,{
m corr}}(-\cos heta^*)}{2} \ A_{FB} &=& rac{A_{
m rec}^{f,{
m corr}}(\cos heta^*) \ - \ A_{
m rec}^{f,{
m corr}}(-\cos heta^*)}{2} \end{array}$$

$$egin{aligned} &A_{CP}^{KK}\ =\ (-0.32\pm 0.21\pm 0.09)\%\ &A_{CP}^{\pi\pi}\ =\ (+0.55\pm 0.36\pm 0.09)\% \end{aligned}$$

Preliminary 976 fb⁻¹ :

A. J. Schwartz

CP Violation in D Decays at Belle

A. J. Schwartz **CP** Violation in D Decays at Belle **DPF 2013 Meeting**

au

$$A^{K_{S}K^{+}}_{
m rec} \;=\; ilde{A}^{K_{S}K^{+}}_{CP} + A_{FB} + A^{K^{+}}_{arepsilon} + A_{K^{0}}$$

Ko et al., JHEP 1302, 098 (2013)

CDP D CDP D CDP D

-0.04

(1) measure tagging asym. using $D^0 \rightarrow K^- \pi^+$

$$egin{array}{rll} A(D^0\!
ightarrow\!K^-\pi^+) &=& A_{FB}+A_arepsilon^{K^-}+A_arepsilon^{\pi^+}\ A(D_s^+\!
ightarrow\!\phi\,\pi^+) &=& A_{FB}+A_arepsilon^{\pi^+} \end{array}$$

(2) take sums and differences in bins of $\cos\theta^*$

$$A_{CP}^{K_{S}K^{+}} = \frac{A_{\rm rec}^{K_{S}K^{+}, \rm corr}(\cos\theta^{*}) + A_{\rm rec}^{K_{S}K^{+}, \rm corr}(-\cos\theta^{*})}{2} \xrightarrow{\stackrel{\scriptstyle 0.02}{\times} 0} \xrightarrow{\scriptstyle 0.02} \xrightarrow{\stackrel{\scriptstyle 0.02}{\times} 0}$$

DPF+2013 Meeting

$$egin{aligned} ilde{A}_{CP}^{K_SK^+} &= A_{CP}^{K_SK^+} + A_{CP}^{\overline{K}{}^0} &= (-0.25 \pm 0.28 \pm 0.14)\% \ A_{CP}^{K_SK^+} &= (+0.08 \pm 0.28 \pm 0.14)\% \end{aligned}$$

 $A_{CP}^{D^{+} \rightarrow K_{S}^{0}K^{+}}$ -0.02 -0.04 0.5 Icosθ^{c.m.s.}I ō 0

13

CP Violation in D Decays at Belle A. J. Schwartz,

$\bigotimes_{BELLE} Belle time-integrated D^+ \rightarrow K_S K^+ \quad (cont'd)$

14

0.5

$$A^{K_S \pi^+}_{
m rec} \;=\; ilde{A}^{K_S \pi^+}_{CP} + A_{FB} + A^{\pi^+}_arepsilon + A_{arepsilon}^{\pi^+} + A_{K^0}$$

(1) measure tagging asym. using $D \rightarrow K^+ \pi \pi$

$$egin{array}{rcl} A(D^+\!
ightarrow\!K^-\pi^+\pi^+)&=&A_{FB}+A_arepsilon^{K^-\pi^+}+A_arepsilon^{\pi^+}\ A(D^0\!
ightarrow\!K^-\pi^+\pi^0)&=&A_{FB}+A_arepsilon^{K^-\pi^+} \end{array}$$

(2) take sums and differences in bins of $\cos\theta^*$

$$egin{array}{rll} ilde{A}_{CP}^{K_S\pi^+} &=& rac{ ilde{A}_{
m rec}^{K_S\pi^+, {
m corr}}(\cos heta^*) \ + \ ilde{A}_{
m rec}^{K_S\pi^+, {
m corr}}(-\cos heta^*)}{2} \ A_{FB} &=& rac{A_{
m rec}^{K_S\pi^+, {
m corr}}(\cos heta^*) \ - \ A_{
m rec}^{K_S\pi^+, {
m corr}}(-\cos heta^*)}{2} \ && 2 \ \end{array}$$

$$=A_{CP}^{K_S\pi^+}+A_{CP}^{K^0} = (-0.363\pm 0.094\pm 0.067)\% \ A_{CP}^{K_S\pi^+} = (-0.024\pm 0.094\pm 0.067)\%$$

Ko et al., PRL 109, 021601 (2012); Ibid., 119903 (2012)

A. J. Schwartz

CP Violation in D Decays at Belle

DPF 2013 Meeting

15

BELLE Direct CP Violation Searches:

$D^0 \rightarrow \pi^+ \pi$	r 976 fb ⁻¹	$(+0.55 \pm 0.36 \pm 0.00)$	09)% arXiv:1212.1975
$D^0 \rightarrow K^+$	K - 976 fb⁻¹	(-0.32 ± 0.21 ± 0.0	9)% arXiv:1212.1975
$D^0 \rightarrow K_S$	π^0 791 fb ⁻¹	(-0.28 ± 0.19 ± 0.1	10)% PRL 106, 211801 (2011)
$D^0 \rightarrow K_S$	$oldsymbol{\eta}$ 791 fb ⁻¹	(+0.54 ± 0.51 ± 0.1	16)% PRL 106, 211801 (2011)
$D^0 \rightarrow K_S$	η ' 791 fb ⁻¹	(+0.98 ± 0.67 ± 0.1	14)% PRL 106, 211801 (2011)
$D^0 \rightarrow K^+ x$	$\pi \pi^0$ 281	fb^{-1} (-0.6 ± 5.3)%	PRL 95, 231801 (2005)
$D^0 \rightarrow K^+$	$\pi\pi^+\pi^-$ 281	fb^{-1} (-1.8 ± 4.4)%	PRL 95, 231801 (2005)
$D^+ \rightarrow \pi^+ r$	1 791 fb ⁻¹	(+1.74 ± 1.13 ± 0.1	19)% PRL 107, 221801 (2011)
$D^+ \rightarrow \pi^+ \eta$	ן' 791 fb -1	(-0.12 ± 1.12 ± 0.1	17)% PRL 107, 221801 (2011)

 $D^{+} \rightarrow K_{S} \pi^{+} \quad 977 \text{ fb}^{-1} \quad (-0.363 \pm 0.094 \pm 0.067)\% \quad (3.2\sigma) \text{ PRL 109, 021601 (2012)} \\ (-0.024 \pm 0.094 \pm 0.067)\% \quad D^{+} \rightarrow K^{0} K^{+} \quad 977 \text{ fb}^{-1} \quad (+0.08 \pm 0.28 \pm 0.14)\% \quad \text{JHEP 02 098 (2013)}$

 $D^+ \rightarrow \phi \pi^+$ 955 fb⁻¹ (+0.51±0.28±0.05)% PRL 108, 071801 (2012)

Fit to 41 measured observables for 10 parameters. Results:

But χ^2 is high, driven by LHCb $D^0 \rightarrow K^+ \pi$:

Parameter	CPV-allowed	CPV-allowed 95%	C.L.
$x \ (\%)$	$0.49{}^{+0.17}_{-0.18}$	[0.10,0.81]	
y~(%)	0.74 ± 0.09	[0.56,0.92]	
δ (°)	$19.5 {}^{+8.6}_{-11.1}$	[-9.6, 35.4]	
$R_D~(\%)$	$0.350{}^{+0.007}_{-0.006}$	[0.337, 0.362]	
$A_D \ (\%)$	-2.6 ± 2.2	[-6.9, 1.7]	
q/p	$0.69{}^{+0.17}_{-0.14}$	[0.44,1.07]	
$\phi~(^\circ)$	$-29.6^{+8.9}_{-7.5}$	[-44.6, -7.5]	
$\delta_{K\pi\pi}~(^\circ)$	$25.1^{+22.3}_{-23.0}$	[-20.6, 69.2]	
A_{π}	0.16 ± 0.21	[-0.25,0.57]	
A_K	-0.16 ± 0.20	[-0.56, 0.23]	
$x_{12} \ (\%)$	_	[0.10,0.80]	
$y_{12}~(\%)$	_	[0.50,0.85]	NO direct
$\phi_{12}(^{\circ})$	_	[-11.7, 35.9]	

Observable	χ^2	$\sum \chi^2$
y_{CP}	2.90	2.90
A_{Γ}	0.03	2.94
$x_{K^0\pi^+\pi^-}$ Belle	0.87	3.81
$y_{K^0\pi^+\pi^-}$ Belle	1.63	5.44
$ q/p _{K^0\pi^+\pi^-}$ Belle	0.30	5.74
$\phi_{K^0\pi^+\pi^-}$ Belle	0.98	6.72
$x_{K^0h^+h^-}$ BaBar	1.44	8.16
$y_{K^0h^+h^-}$ BaBar	0.39	8.55
$R_M(K^+\ell^-\nu)$	0.11	8.67
$x_{K^+\pi^-\pi^0}$ BaBar	6.26	14.93
$y_{K^+\pi^-\pi^0}$ BaBar	2.83	17.76
CLEOc		
$(x/y/R_D/\cos\delta/\sin\delta)$	10.83	28.59
$R_D^+/x'^{2+}/y'^+$ BaBar	7.76	36.34
$R_D^-/x'^{2-}/y'^-$ BaBar	5.59	41.93
$R_D^+/x'^{2+}/y'^+$ Belle	1.76	43.69
$R_D^-/x'^{2-}/y'^-$ Belle	0.66	44.35
$R_D/x'^2/y'$ CDF	11.46	55.81
$R_D/x^{\prime 2}/y^\prime$ LHCb	9.67	65.48
$A_{KK}/A_{\pi\pi}$ BaBar	0.71	66.19
$A_{KK}/A_{\pi\pi}$ Belle	1.56	67.75
$A_{KK} - A_{\pi\pi}$ CDF	1.57	69.33
$A_{KK} - A_{\pi\pi}$ LHC b $(D^* {\rm ~tag})$	0.01	69.33
$A_{KK} - A_{\pi\pi}$ LHC b $(B^0\!\rightarrow\!D^0\mu X~{\rm tag})$	6.08	75.41

A. J. Schwartz

CP Violation in D Decays at Belle

$\overset{\bullet}{\longrightarrow} Belle \ time-integrated \ D^0 \rightarrow K^+ \pi \ \pi^+ \pi$

New result, **791** *fb*⁻¹ *:*

 $D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$ "wrong-sign" decays are due to both a doubly-Cabibbo suppressed amplitude and mixing:

$$egin{aligned} R_{
m WS} &= rac{\Gamma(D^0 \,{
ightarrow}\, K^+ \pi^- \pi^+ \pi^-)}{\Gamma(D^0 \,{
ightarrow}\, K^- \pi^+ \pi^- \pi^+)} \ &= R_D + lpha y' \sqrt{R_D} + rac{1}{2} (x^2 + y^2) \ &(y' \;=\; y \cos \delta - x \sin \delta) \end{aligned}$$

Normalize to Cabibbo-favored $D^0 \rightarrow K^- \pi^+ \pi^- \pi^-$ decays

2-d binned fit to
$$M_{K3\pi}$$
 and
 $Q = M_{D^*\pi} - M_D$

White et al., arXiv:1307.5935, submitted to PRD

A. J. Schwartz

CP Violation in **D** Decays at Belle

Belle time-integrated $D^0 \rightarrow K^+ \pi \pi^+ \pi$ (cont'd)

$$R_{
m WS} \;=\; R_{
m WS}^\prime \cdot rac{arepsilon (K^-\pi^+\pi^+\pi^-)}{arepsilon (K^+\pi^-\pi^+\pi^-)}$$

$$N'(K\pi\pi\pi) = \sum_{i=1}^{576} \left[rac{N_i - N_{
m bkg} \cdot f_i}{arepsilon_i}
ight] \ \Rightarrow \ R_{
m WS} = rac{N'(K^+\pi^-\pi^+\pi^-)}{N'(K^-\pi^+\pi^+\pi^-)}$$

$$egin{array}{rl} N'(K^+\pi^-\pi^+\pi^-) &=& 37\,297\,\pm 881 \ N'(K^-\pi^+\pi^+\pi^-) &=& 11\,510\,000\,\pm 20\,000 \end{array}$$

 $\Rightarrow R_{\rm WS} = (0.324 \pm 0.008 \pm 0.007)\%$ $B_{D^0 \to K^+ \pi^- \pi^+ \pi^-} = (2.61 \pm 0.06 \substack{+0.09 \\ -0.08}) \times 10^{-4}$

Take α and strong phase δ from CLEOc: $R_D = (0.327 \substack{+0.019 \\ -0.016})\%$ Acceptance calculated in 5-dimensional space of m_{h+h} - bins (576 bins total):

A. J. Schwartz

CP Violation in **D** Decays at Belle

time-dependent $D^0(t) \rightarrow K^+K^-, \pi^+\pi^-$ 976 fb⁻¹ preliminary: $y_{CP} = (1.11 \pm 0.22 \pm 0.11)\%$ $A_{\Gamma} = (-0.03 \pm 0.20 \pm 0.08)\%$ time-integrated $D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$ 976 fb⁻¹ preliminary: $\Delta A \equiv A_{KK} - A_{\pi\pi} = (-0.87 \pm 0.41 \pm 0.06)\%$ time-integrated $D^+ \rightarrow K_S K^+$ 977 fb⁻¹ final: $A = (+0.08 \pm 0.28 \pm 0.14)\%$ time-integrated $D^+ \rightarrow K_S \pi^+$ $A = (-0.024 \pm 0.094 \pm 0.067)\%$ 977 fb⁻¹ final: $[A + A(K^0) = (-0.363 \pm 0.094 \pm 0.067)\%]$ time-integrated $D^0 \rightarrow K^+ \pi \pi^+ \pi^-$ 791 fb⁻¹ preliminary: $B = (2.61 \pm 0.06^{+0.09}_{-0.08}) \times 10^{-4}$ Taking α and δ from CLEO: $R_D = (0.327 \pm 0.019)\%$ \implies No sign of new physics, but: these searches represent "low-lying fruit" and will be extended by a factor of ~50 with the upcoming Belle II experiment

A. J. Schwartz CP Violation in D Decays at Belle DPF 2013 Meeting

Extra/Backup

A. J. Schwartz CP Violation in D Decays at Belle DPF 2013 Meeting

HFAG global fit: 2-d likelihood functions

www.slac.stanford.edu/xorg/hfag/charm/index.html

CPV-allowed plot, no mixing (x,y) = (0,0) point: $\Delta \chi^2 = 263.8$ No CPV ($|q/p|, \phi$) = (1,0) point: $\Delta \chi^2 = 5.371$, CL = 0.068, CPV favored at 1.8 σ

A. J. Schwartz CP

CP Violation in D Decays at Belle DPF 2013 Meeting

22

Same underlying direct CPV as $D^0 \rightarrow K^+K^-$: (can check for new physics)

A. J. Schwartz

CP Violation in **D** Decays at Belle

BELLE B factory performance – final tally:

A. J. Schwartz

CP Violation in D Decays at Belle