$\begin{array}{c} {\rm Recent \ Results \ on} \\ {\rm Radiative \ and \ Electroweak \ Penguin \ Decays \ of \ B Mesons} \\ {\rm at \ BABAR} \end{array}$

DPF 2013, August 16, 2013

A.M. Eisner (representing BABAR)

Santa Cruz Institute for Particle Physics

Radiative and Electroweak Decays of B Mesons

- Flavor-changing neutral current processes: $b \to s(d)\gamma$ and $b \to s(d)\ell^+\ell^-$.
- At hadron level: $B \to X_{s(d)} \gamma$ and $B \to X_{s(d)} \ell^+ \ell^-$
- These do not occur at tree level (unlike dominant B decays), but rather via one-loop (Penguin) diagrams.
- Thus branching fractions (BFs) are small these are rare decays.
- Standard Model (SM): the loops in the leading diagrams involve heavy quarks and W bosons.
- Beyond the SM: new particles (e.g., charged Higgs or chargino) can show up virtually in the loops.
- Extensive theoretical effort has yielded low SM uncertainties for BFs and CP asymmetries (A_{CP}) for inclusive processes \Longrightarrow

Good place to look for new physics (NP).

• Exclusive-state predictions are less precise.

SM Diagrams for Radiative and Electroweak Decays of B Mesons

(plus diagram with γ (Z⁰) attached to quark line; similar for final-state s)

BABAR Analyses in this Talk

• Fully-inclusive measurement of $B \rightarrow X_s \gamma$ (J.P. Lees *et al.*, Phys. Rev. Lett. 109, 191801 (2012), J.P. Lees *et al.*, Phys. Rev. D 86, 112008 (2013))

 $\circ \mathcal{B}(B
ightarrow X_s \gamma) - ext{sensitive to NP}$

- \circ Direct *CP* asymmetry (A_{CP}) in $B \to X_{s+d}\gamma$ sensitive to NP
- Photon energy spectrum in $B \to X_s \gamma$ not sensitive to NP (rather, reflects motion of b quark inside B, *i.e.*, the shape function)
- Direct A_{CP} in $B \to X_s \gamma$ via sum of exclusive modes sensistive to NP (preliminary results)
- Search for B → X_dℓ⁺ℓ⁻ decays in exclusive modes –
 SM predictions for BF to π, η: O(1 to 4 × 10⁻⁸) (J.P. Lees et al., arXiv:1303.6010, to be published in Phys. Rev. D)
- Not included: Search for $B \to K^{(*)}\nu\overline{\nu}$ with hadronic recoil SM BFs $\approx 4.5(6.8) \times 10^{-6}$ for K (K^*), New BABAR 90% CL isospin-averaged limits: $\approx 32(79) \times 10^{-6}$ (J.P. Lees *et al.*, Phys. Rev. D 87, 112005 (2013))

Theory

Effective Hamiltonian: sum of operators \mathcal{O}_i times Wilson coefficients, C_i .

- For $B \to X_{s(d)}\gamma$ in the SM, the important terms involve C_7 and C_8 .
- Coefficients in the SM are real; NP may introduce non-zero phases.
- For $B \to X_{s(d)} \ell^+ \ell^-$ there are two additional operators, \mathcal{O}_9 and \mathcal{O}_{10} , both significant in SM.

Radiative Decays

• After a computation involving thousands of diagrams and many contributors, SM prediction at NNLO (next-to-next-leading-order) is

 ${\cal B}(B o X_s \gamma) = (3.15 \pm 0.23) imes 10^{-4} (E_\gamma > 1.6 \, {
m GeV})$

(M. Misiak *et al.*, Phys. Rev. Lett. 98, 022002 (2007)) where E_{γ} is the photon energy in the *B* rest frame.

• Since t quark dominates loops,

 $\mathcal{B}(B
ightarrow X_d \gamma) / \mathcal{B}(B
ightarrow X_s \gamma) pprox (|V_{td}| / |V_{ts}|)^2 = 0.044 \pm 0.003$

Theory: Direct A_{CP} in $B \to X_{s(d)}\gamma$ $A_{CP}(X_s(X_d)) \equiv A_{CP}(B \to X_{s(d)}\gamma) = \frac{\Gamma(B \to X_{s(d)}\gamma) - \Gamma(\overline{B} \to X_{\overline{s(d)}}\gamma)}{\Gamma(B \to X_{s(d)}\gamma) + \Gamma(\overline{B} \to X_{\overline{s(d)}}\gamma)}$

- Older SM computations (e.g., T. Hurth et al., Nucl. Phys. B 704, 56 (2005)):
 - $A_{CP}(X_s) = 0.0044^{+0.0024}_{-0.0014}$ and $A_{CP}(X_d) = -0.102^{+0.033}_{-0.058}$
 - If X_s and X_d are not separated, the combined

$$A_{CP}(B o X_{s+d}\gamma) = rac{\Gamma(B o X_s \gamma + B o X_d \gamma) - \Gamma(\overline{B} o X_{\overline{s}} \gamma + \overline{B} o X_{\overline{d}} \gamma)}{\Gamma(B o X_s \gamma + B o X_d \gamma) + \Gamma(\overline{B} o X_{\overline{s}} \gamma + \overline{B} o X_{\overline{d}} \gamma)}$$

is zero to order 10^{-6} , a very sensitive test for NP.

- Recently, M. Benzke et al. (Phys. Rev. Lett. 106, 141801 (2011)) found
 - Long-distance ("resolved photon") effects increase the uncertainty:

 $-0.006 < A_{CP}(X_s) < 0.028$ SM prediction

• These effects cancel for a a new proposed measurement:

$$\Delta A_{CP}(X_s) \equiv A_{CP}(X_s^-) - A_{CP}(X_s^0) \propto ilde{\Lambda}_{78} \mathrm{Im}(C_8/C_7)$$

which is zero in SM. (Hadronic factor is uncertain: $17 < \tilde{\Lambda}_{78} < 190 \text{ MeV.}$) • The precise prediction $A_{CP}(X_s + X_d) = 0$ is preserved.

BABAR Fully-inclusive $B \rightarrow X_s \gamma$: Analysis Ingredients

Notation: E_{γ} is true γ energy in B rest frame, E_{γ}^* is measured energy in CM $(\Upsilon(4S))$ frame.

- Inclusivity: from B decay require only a γ with $\mathrm{E}^*_{\gamma} > 1.53\,\mathrm{GeV}$ (CM).
- The *B* rest frame is not known. E_{γ}^* differs from E_{γ} by Doppler smearing (motion of *B* in CM frame) and calorimeter energy resolution.
- Backgrounds: Continuum $(e^+e^- \to q\overline{q} \ (q \neq b) \text{ or } \tau^+\tau^-)$ and other $B\overline{B}$.
- Suppress Continuum using:
 - Full-event topology
 - High-p Lepton Tag (e or μ): in signal and other BB events, lepton is from semileptonic decay of other B; far less likely for Continuum.
 Bonus: lepton also provide CP tag
- Veto candidate high-energy γ when partner from π^0 or η decay is found.

BABAR Fully-inclusive $B \rightarrow X_s \gamma$: Analysis Ingredients

- Subtract Continuum by scaling the data (10%) collected off-resonance dominates statistical error
- Subtact $B\overline{B}$ using data-corrected MC dominates systematic error
- Large $B\overline{B}$ background implies no useful signal measurement below $1.8 \,\text{GeV}$
- Signal Region ("blind") above 1.8 GeV; Control Region 1.53 to 1.8 GeV.
- For A_{CP} , count events by lepton charge for $E_{\gamma}^* > 2.1 \, \text{GeV}$ (optimized blind).

MC Category		1.53 to $1.8\mathrm{GeV}$		$1.8 ext{ to } 2.8 ext{ GeV}$	
Particle	Parent	Fraction	Corr. Factor	Fraction	Corr. Factor
Photon	π^0	0.5390	1.05	0.6127	1.09
	η	0.2062	0.79	0.1919	0.75
	ω	0.0386	0.80	0.0270	0.80
	η'	0.0112	0.52	0.0082	1.13
	\boldsymbol{B}	0.0362	1.00	0.0194	1.00
	J/ψ	0.0061	1.00	0.0071	1.00
	e^{\pm}	0.0967	1.07	0.0619	1.07
	Other	0.0035	1.00	0.0032	1.00
	Total	0.9375		0.9315	
e^{\pm}	Any	0.0411	1.65	0.0333	1.68
\overline{n}	Any	0.0170	0.35	0.0243	0.15
Other	Any	0.0029	1.00	0.0028	1.00
None		0.0015	1.00	0.0079	1.00

Inclusive $B \to X_s \gamma$: Monte Carlo Composition of B Background

Most components corrected using studies of Data vs. MC control samples.

BABAR Fully-inclusive $B \rightarrow X_s \gamma$: Results

After correcting for efficiency, making small adjustment from E_{γ}^* to E_{γ} , including the additional systematics (allowing for correlations), and scaling by 0.958 to account for $X_d\gamma$ contribution:

 ${\cal B}(B o X_s \gamma) = (3.21 \pm 0.15 \pm 0.29 \pm 0.08) imes 10^{-4} ~~(E_\gamma > 1.8 \, {
m GeV})$

Errors: statistical, systematic and model-dependence.

BABAR Fully-inclusive $B \rightarrow X_s \gamma$: Results

Compare Branching Fraction to earlier measurements (vs. min. E_{γ})

Measurements with different thresholds from a single experiment are strongly correlated. Uncertainties increase toward lower thresholds due to increasing $B\overline{B}$ backgrounds – *c.f.* Belle's 1.7-GeV result.

To compare to theory, one must extrapolate down to $1.6\,{\rm GeV}$

BABAR Fully-inclusive $B \rightarrow X_s \gamma$: Results

Unfold measured BABAR photon spectrum in E_{γ}^* to true spectrum in E_{γ}

- Heavy Quark Effective Theory can compute spectral shape in the "kinetic scheme" or "shape function scheme" for any set of HQET parameters.
- Heavy Flavor Averaging Group (HFAG) has computed world-average values of HQET parameters using measurements of $B \to X_c \ell \nu$ and $B \to X_s \gamma$.

BABAR Fully-inclusive $B \to X_s \gamma$: Illustration of NP Constraint Extrapolate BABAR 1.8-GeV result down, using HFAG-provided factor:

 $\begin{array}{lll} \text{Extrapolated} \quad \mathcal{B}(B \to X_s \gamma) = (3.31 \pm 0.35) \times 10^{-4} & (E_\gamma > 1.6 \, \mathrm{GeV}) \\ \text{Consistent with SM prediction of} & (3.15 \pm 0.23) \times 10^{-4}. \end{array}$

- Comparison can constrain New Physics.
- Example: type-II two-Higgs doublet model (M. Misiak *et al.*, *ibid*, and U. Haisch, arXiv:0805.2141v2)
 - The red region is excluded at 95% CL $(m_{H^{\pm}} < 327 \,{\rm GeV}/c^2 {\rm ~for~most~tan}\,\beta)$
 - Recent THDM update strengthens limit (T. Hermann *et al.*, JHEP 1211, 036 (2012))

BABAR Fully-inclusive $B \rightarrow X_s \gamma$: A_{CP} Results

In contrast to the branching fraction, for $A_{CP} \ B \to X_s \gamma$ and $B \to X_d \gamma$ behave very differently. Thus only sum of X_s and X_d events is measured. Tag *B* vs. \overline{B} by lepton charge, correct for mistags.

 $A_{CP}(B
ightarrow X_{s+d} \gamma) = 0.057 \pm 0.060 \mathrm{(stat)} \pm 0.018 \mathrm{(syst)}$

Consistent with SM prediction of 0.

BABAR Direct $A_{CP}(B \to X_s \gamma)$ by Sum of Exclusive Decays Using exclusive final states (Data sample: 420 fb⁻¹)

- Distinguish X_s from X_d by kaon $(K^{\pm} \text{ or } K_S^0)$ in reconstructed final state.
- Assign CP charge by B^+ vs. B^- , or for B^0 by K^+ vs. K^- in final state.
- Inclusiveness: as many final states as feasible. (Only $K_S^0 \to \pi^+\pi^-$ used.)

These 16 modes are used for A_{CP} measurement:

Charged Modes	Neutral Modes
$K^0_S \ \pi^+ \ \gamma$	$K^+ \; \pi^- \; \gamma$
$\stackrel{\sim}{K^+}\pi^0\gamma$	$K^+ \; \pi^- \; \pi^0 \; \gamma$
$K^+ \; \pi^+ \; \pi^- \; \gamma$	$K^+ \; \pi^+ \; \pi^- \; \pi^- \; \gamma$
$K^0_S \ \pi^+ \ \pi^0 \ \gamma$	$K^+ \; \pi^- \; \pi^0 \; \pi^0 \; \gamma$
$\stackrel{\sim}{K^+}\pi^0~\pi^0~\gamma$	$K^+ \; \eta \; \pi^- \; \gamma$
$K^0_S \ \pi^+ \ \pi^- \ \pi^+ \ \gamma$	$K^+ \; K^- \; K^+ \; \pi^- \; \gamma$
$\stackrel{\sim}{K^+}\pi^+~\pi^-~\pi^0~\gamma$	
$K^{0}_{S} \; \pi^{+} \; \pi^{0} \; \pi^{0} \; \gamma$	
$\check{K^+} \eta \; \gamma$	
$K^+ \; K^- \; K^+ \; \gamma$	

BABAR Direct $A_{CP}(B \to X_s \gamma)$: Analysis Ingredients

- Standard *B* reconstruction variables: $m_{\rm ES}$ (energy-substituted mass) and ΔE (beam energy minus candidate energy in CM frame).
- After event selection, signal yield and A_{CP} extracted by fits to $m_{\rm ES}$ spectra.
- Largest background is Continuum events (no peak in $m_{\rm ES}$).
- Background suppression uses event topology (reduces Continuum) and photonpair masses.
- Peaking background: signal-crossfeed and a fraction of non-signal $B\overline{B}$ events. The fit-extracted A_{CP} includes a contribution from peaking background.

The selected sample represents E_{γ} (computed most precisely from m_{X_s}) above $\sim 2.2 \text{ GeV}$, not a sharp cutoff. $B\overline{B}$ background is small in this region.

BABAR Direct $A_{CP}(B \rightarrow X_s \gamma)$: Preliminary Results

Fitting the spectra yields A_{CP} for peak events. Correct for detector asymmetry and assign systematic error (0.009) for asymmetry in peaking backgrounds.

BABAR Preliminary Results (both consistent with SM)

 $A_{CP}(X_s) = 0.017 \pm 0.019(\mathrm{stat}) \pm 0.010(\mathrm{syst})$

 $\Delta A_{CP}(X_s) = 0.050 \pm 0.039(\mathrm{stat}) \pm 0.015(\mathrm{syst}) \quad \mathrm{(first\ measurement)}$

BABAR Direct $A_{CP}(B \to X_s \gamma)$: Preliminary Results Limits on $\operatorname{Im}(C_8/C_7)$ (non-zero only with NP)

- Allow for full range of coefficient $\tilde{\Lambda}_{78}$
- For each value of $\tilde{\Lambda}_{78}$ vs. $\operatorname{Im}(C_8/C_7)$:
 - compute theory $\Delta A_{CP}(X_s)$ and
 - compare it to measured value (Gaussian errors)
- Plot shows <u>68%</u> and <u>90%</u> confidence regions
- Conservative limits on $\text{Im}(C_8/C_7)$: horizontal extremes of shaded areas

 $0.07 \leq \text{Im}(C_8/C_7) \leq 4.48 \ (68\% \text{ CL})$ BABAR $-1.64 \leq \text{Im}(C_8/C_7) \leq 6.52 \ (90\% \text{ CL})$ Preliminary

$B \to X_{s(d)} \ell^+ \ell^-$ Measurements

- Branching fractions $\mathcal{O}(\alpha)$ smaller than for $B \to X_{s(d)}\gamma$. Thus:
- Most measurements to date are of exclusive modes (much less precise BF predictions, but more easily measured, than inclusive process).
- Most publications have been for $B \to K^{(*)}\ell^+\ell^-$ (See Backup.) PDG averages: $\mathcal{B}(B \to K\ell^+\ell^-) = (0.48 \pm 0.04) \times 10^{-6}, \, \mathcal{B}(B \to K^*\ell^+\ell^-) = (1.05 \pm 0.10) \times 10^{-6}$
- Additional degrees of freedom vs. $B \to X_{s(d)}\gamma$: $m_{\ell^+\ell^-}$ and lepton angles may provide sensitive NP tests, e.g., angular asymmetries as function of $m_{\ell^+\ell^-}$
- $B \to X_d \ell^+ \ell^-$ is suppressed by additional CKM factor of ≈ 23 .
- SM BF predictions in ranges (1.4 − 3.3) × 10⁻⁸ for π ℓ⁺ℓ⁻ modes, (2.5 − 3.7) × 10⁻⁸ for η ℓ⁺ℓ⁻ (largest uncertainties are in form factors). NP could significantly increase these BFs.

Here: recent BABAR searches for $B^{\pm} \to \pi^{\pm} \ell^+ \ell^-$, $B^0 \to \pi^0 \ell^+ \ell^-$, $B^0 \to \eta \ell^+ \ell^-$

BABAR Search for $B \to \pi \ell^+ \ell^-$ and $B \to \eta \ell^+ \ell^-$ Decays

Analysis of $428 \, \text{fb}^{-1}$ of data

- Reconstruct *B* candidates from: high-energy γ ; π^{\pm} or π^{0} (to $\gamma \gamma$) or η (to $\gamma \gamma$ or $\pi^{+} \pi^{-} \pi^{0}$); $\ell^{+}\ell^{-} (e^{+} e^{-} \text{ or } \mu^{+} \mu^{-})$
- Largest backgrounds (there are others)
 - $B o J/\psi(o \ell^+ \ell^-) X$ (likewise $\psi(2S))$ veto using $m_{\ell^+ \ell^-}$
 - Random combinations of particles suppress based on event topology and missing energy/momentum
 - $B \to K^{(*)} \ell^+ \ell^- \Delta E$ spectra differ from signal, include in fits (e.g., $K^{\pm} \to \pi^{\pm}$ misidentification or lost π from K_S^0 decay)
- Unbinned maximum likelihood fits in $m_{\rm ES}$ and ΔE , including:
 - Signal (shapes from MC, yield free)
 - Combinatoric background ("ARGUS" shape and yield free)
 - Peaking background, mostly from $B \to K^{(*)} \ell^+ \ell^-$ (compute yields from known BFs or control samples, shapes from MC)

BABAR Search for $B \to \pi \ell^+ \ell^-$ and $B \to \eta \ell^+ \ell^-$ Decays

Examples of fits

Components: Cominatoric: dotted K^* and K_S^0 : dot-dash $K^+ e^+ e^-$: dashed $\pi e^+ e^-$: solid red Total fit: solid blue

 $(K^+ e^+ e^- \text{ is fit simultaneously with } \pi^+ e^+ e^-, \text{ to which it is a background;} K^+ e^+ e^- \text{ yield ratio is fixed, based on known K-misID probability.})$

BABAR Search for $B \to \pi \ell^+ \ell^-$ and $B \to \eta \ell^+ \ell^-$ Decays

So far: no disagreement with SM

Summary

Several recent BABAR measurements have the potential for finding or constraining new physics (NP) beyond the SM

- $\mathcal{B}(B o X_s \gamma)$
- $ullet A_{CP}(B o X_{s+d} \gamma)$
- $A_{CP}(B \to X_s \gamma)$ and $\Delta A_{CP}(X_s)$
- Search for ultra-rare decays $B \to (\pi, \eta) \ell^+ \ell^-$

No evidence for NP found, but current results can be used to constrain specific NP models.

These measurements can be fruitfully pursued at a future high-intensity *B*-factory (Belle-II). Their power depends on the precision of the SM predictions and (especially for $\mathcal{B}(B \to X_s \gamma)$) the ability to reduce systematic uncertainties.

Backup: Summary of $B \to K^{(*)} \ell^+ \ell^-$ Branching Fractions $B \to K^{(*)} \ell^+ \ell^-$ branching fractions (in 10⁻⁶)

