What have we learned about flavor from experiment

Alexander L Kagan University of Cincinnati

DPF 2013, Santa Cruz

many thanks to Sebastian Jaeger, Jorge Camalich, Gilad Perez and Jure Zupan for sharing unpublished results with me

Standard Model Higgs, vacuum metastability

- we are faced with a renormalizable theory, metastable vacuum
 no clear indication for Mnp < Mpl
- λ never gets too negative: tunneling probability to true vacuum longer than age of universe

- from Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia '13

- The traditional role of flavor physics provide effective theories _____ scales of new physics
 - weak scale (V-A), charm quark mass $(K \overline{K} \text{ mixing})$, top mass $(B \overline{B} \text{ mixing})$
- where do we stand today in the search for the next scale of new physics

 $\bar{B}_d \to \bar{K}^{*0} [\to K^- \pi^+] \ell^+ \ell^-$

semileptonic operators: SM dominated by the electoweak penguin operators

$$Q_{7\gamma} = \frac{e}{16\pi^2} \,\hat{m}_b \,\bar{s}\sigma_{\mu\nu} P_R F^{\mu\nu} b \qquad Q_{9V} = \frac{\alpha_{\rm em}}{4\pi} (\bar{s}\gamma_\mu P_L b) (\bar{l}\gamma^\mu l)$$
$$Q_{10A} = \frac{\alpha_{\rm em}}{4\pi} (\bar{s}\gamma_\mu P_L b) (\bar{l}\gamma^\mu \gamma^5 l) \qquad b \xrightarrow{W} f_{\gamma, Z^0} f_{\gamma, Z^$$

 with NP could have operators with opposite chirality, (pseudo)scalar, tensor currents,...

eg: Z', susy loops, new Higgs penguins,.....

• The lepton pair and K* can have three helicities

 $\lambda = \pm 1, 0$

The decay amplitudes given in terms of products of leptonic and hadronic amplitudes

hadronic amplitudes have three possible helicities $H(\lambda)$ correspondence with leptonic currents

$$\bar{\ell}\gamma_{\mu}\ell \to H_V(\lambda), \quad \ell\gamma_{\mu}\gamma_5\ell \to \quad H_A(\lambda), \dots$$

• $H_{V,A,..}(\lambda)$ depend on $q_{\ell\ell}^2$, Wilson coefficients $C_{7V}, C_{9V}, C_{10A}, ...$, form factors, factorizable, and non-factorizable effects (power corrns)

• SM V-A structure \longrightarrow $H^+ << H^-, H^0$

 A lot of information in the angular dependence of the decays: The four-fold differential spectrum

$$\frac{d^{(4)}\Gamma}{dq^2 d(\cos\theta_l)d(\cos\theta_k)d\phi} = \frac{9}{32\pi} \left(I_1^s \sin^2\theta_k + \dots\right)$$

contains 12 angular coefficients I_i (noth. of Jaeger, Camalich '12)

"Clean" observables

• new generation of observables $P_i^{(')}$ with reduced form factor dependence at large recoil, $0.1 < q^2 < 8 \text{ GeV}^2$, due to cancelations with denominators

Descotes-Genon, Hurth, Matias, Virto '13; Matias, Mescia, Ramon, Virto '12; Becirevic, Schneider '11; Bobeth, Hiller, van Dyk '10; Altmanshoffer, Ball, Bharucha, Buras, Straub '08

- numerators and denominators are CP averaged integrals over bins of $\ q^2$, eg.

$$-\frac{A_T^{\text{Re}}}{2} \sim P_2 \sim \frac{\int I_6^s dq^2}{\int \sqrt{F_T F_L} dq^2}, \quad P_5' \sim \frac{\int I_5 dq^2}{\int \sqrt{F_T F_L} dq^2}$$

 F_L = longitudinal pol. fraction; $F_T = 1 - F_L$ = transverse pol. fraction

 P_2 is the 'normalized' A_{FB} (forward-backward asymmetry of μ^-)

- SM theory predictions show good overall agreement with recent LHCb measurements
- some speculation about 'anomalies' at low q^2 in P'_5 , P_2 Descotes-Genon, Matias, Virto; Altmanshoffer, Straub; Gauld, Goertz, Hasich relative to SM theory errors in eg, Descotes-Genon, Hurth, Matias, Virto '13

• P_2 is the evolved version of A_{FB} , but, they play a complementary role.

It magnifies a tiny tension in the second bin of A_{FB}." - from Matias, EPS '13

Results for new observables

- Discrepancy with respect to SM predictions (arXiv:1303.5794) at low q^2
- 3.7 sigma discrepancy in the region $4.3 < q^2 < 8.68$ GeV²/c⁴
- 0.5% probability (2.8 sigma) to observe such a deviation considering 24 independent measurements)
- 2.5 sigma discrepancy in the region $1.0 < q^2 < 6.0 \text{ GeV}^2/c^4$

N.B.: Jaeger-Camelich (arXiv:1212.2263) have predictions in the region $1.0 < q^2 < 6.0 \text{ GeV}^2/c^4$ with much larger theoretical error and small shift in the central value (QCD factorization breaking + ccbar loop)

18-24/07/2013

Nicola Serra - EPS 2013

13

*slide from N. Serra EPS 2013

• treatment of $O(\Lambda/m_b)$ power correction uncertainties is ad-hoc - insufficient to claim the existence of anomalies

eg, in Descotes-Genon, Hurth, Matias, Virto '13 helicity amplitudes parametrized as

$$H_i^{\lambda} = (H_i^{\lambda})^0 [1 + C_i e^{i\theta_i}]$$

the C_i , θ_i varied independently in the ranges

$$C_i \in [-0.1, 0.1], \quad \theta_i \in [-\pi, \pi]$$

For each observable,

 1σ uncertainty = interval containing 66% of scatter about median

Theory uncertainties Jaeger, Camalich '12

- leading power hadronic params: soft form factors, decay constants, light cone distribution amps,...
- $O(\Lambda/m_b)$ power corrections to heavy quark / large energy limit form factor relations: surveyed their violation in calculations which automatically include power corrections, (LCSR, QCDSR, DSE)
- $O(\Lambda/m_b)$ non-factorizable power corrections, mainly 'charm loops' from current-current operators: estimated in LCSR approach

 For each observable, the full scatter ranges obtained in each category are added in quadrature

Descotes-Genon et al

- O(TeV) NP, e.g., Z' exchange contributions to C_{9V} , C'_{9V} , could be lurking in the data Descotes-Genon, Matias, Virto; Altmanshoffer, Straub
- However, the dedicated assessment of power correction uncertainties by Jaeger, Camalich + recent LHCb measurements

significant theoretical improvements will probably be required, in order to have a window to NP based solely on CP conserving observables in $B \rightarrow K^* \mu^+ \mu^$ at low q² (with the exception of the lowest bin)

$B_s \to \mu^+ \mu^-, \quad B_d \to \mu^+ \mu^-$

semileptonic effective operators

SM+NP:
$$Q_{10A} = \frac{\alpha_{em}}{4\pi} (\bar{s}\gamma_{\mu}P_{L}b)(\bar{l}\gamma^{\mu}\gamma^{5}l)$$
 NP: $Q_{S(P)} = \frac{\alpha_{em}}{4\pi} [\bar{s}P_{R}b][\bar{\ell}(\gamma_{5})\ell]$
+ opposite chirality ops

• SM predictions _{Buras}, et al.'13 $Br(B_s \rightarrow \mu^+ \mu^-)_{SM} = (3.56 \pm 0.18) \times 10^{-9}$ time integrated, $Br(B_d \rightarrow \mu^+ \mu^-)_{SM} = (1.03 \pm 0.07) \times 10^{-10}$

largest uncertainties from CKM, 5% from higher order EWK corrections

- LHCb /CMS averages Serrano CERN seminar
 - Several methods used, giving compatible results

preliminary

LHCb-CONF-2013-012 CMS PAS BPH-13-007

 Method based on pseudo experiments, modelling distribution with variablewidth Gaussian function (suggested by R. Barlow arXiv:physics/0406120):

$$BR(B_s^0 \to \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$$

 $BR(B^0 \rightarrow \mu^+ \mu^-) = (3.6^{+1.6}_{-1.4}) \times 10^{-10}$

Observation!!

Not statistically significant

$$B_s \to \mu^+ \mu^- \text{ vs } B_d \to \mu^+ \mu^-$$

"Golden" MFV relation: Buras '03; Hurth, Isidori, Kamenik, Mescia '08

$$\frac{\text{Br}(B_d \to \mu^+ \mu^-)}{\text{Br}(B_s \to \mu^+ \mu^-)} \simeq \frac{f_{B_d}^2}{f_{B_s}^2} \frac{\tau_{B_d}}{\tau_{B_s}} \frac{|V_{td}|^2}{|V_{ts}|^2} \simeq 0.03$$

holds for SM, MFV, $U(2)^3$ flavor symmetry

• experimental ratio (assuming SM time integration for B_s) $\frac{\text{Br}(B_d \to \mu^+ \mu^-)_{\text{exp}}}{\text{Br}(B_s \to \mu^+ \mu^-)_{\text{exp}}} \simeq 0.14 \pm 0.06$

> interesting future flavor symmetry diagnostic !

* slide adopted from Altmanshofer, Snowmass Argonne Intensity Frontier workshop

2.0

CP violation in $D - \overline{D}$ mixing

CP violation (CPV) in charm provides a unique probe of New Physics (NP)

- sensitive to NP in the up sector
- SM charm physics is CP conserving to first approximation (2 generation dominance)
- In the SM, CPV in mixing enters at $O(V_{cb}V_{ub}/V_{cs}V_{us}) \sim 10^{-3}$

In view of the consensus that $\Delta A_{CP} \leq O(\text{few} \times 10^{-3})$ can be obtained in the SM

D mixing is probably the only open window for NP in charm CPV, at least in the absence of future precision lattice data on charm direct CPV

The "theoretical" mixing parameters

 M_{12} is dispersive mixing: due to long-distance exchange of off-shell intermediate states (dominates in SM), and short-distance effects (NP)

 Γ_{12} is absorptive mixing: due to long distance exchange of on-shell intermediate states

• ϕ_{12} is a CP violating phase: responsible for CP violation in pure mixing

e.g., a non-vanishing semileptonic CP asymmetry, $a_{\rm SL}$

$$\Gamma(D^0(t) \to \ell^- X) \neq \Gamma(\overline{D^0}(t) \to \ell^+ X)$$

- ϕ_{12} is solely responsible for CPV in the interference between decays with and without mixing (time dependent CP asymmetries), in the limit that non-trivial weak phases in decay are neglected
 - excellent approximation given current exp sensitivity to $\,\phi_{12}$

Example: SCS decays to CP eigenstates, $D^0 \rightarrow K^+ K^-$, $\pi^+ \pi^-$

$$\Gamma(D^0(t) \to f) \propto \exp[-\hat{\Gamma}_{D^0 \to f} t], \quad \Gamma(\overline{D^0}(t) \to f) \propto \exp[-\hat{\Gamma}_{\overline{D^0} \to f} t]$$

CPV:
$$\hat{\Gamma}_{D^0 \to f} \neq \hat{\Gamma}_{\bar{D}^0 \to f}$$

Fits of $\phi_{12}, x_{12}, y_{12}$ to data yield

HFAG fit (April 2013): $\phi_{12} (^{\circ}) = 4.8^{+9.2}_{-7.4}$ UTfit (Silvestrini, Beauty 2013): $\phi_{12} (^{\circ}) = 2 \pm 11$

Weak phases in decay

_

In general ϕ_{12} consists of a dispersive part ϕ_{12}^M , and a long-distance absorptive part ϕ_{12}^Γ

They can be consistently defined relative to the phases of decay amplitudes, eg, $\,D\to K^\pm\pi^\mp$, with

$$\phi_{12} = \phi_{12}^M - \phi_{12}^\Gamma$$

In the SM: ϕ_{12}^{Γ} and the long-distance part of ϕ_{12}^{M} are due to the weak phase γ in the penguin amplitudes of the singly Cabibbo suppressed intermediate states, and

• the short distance contribution to ϕ^M_{12} is negligible

• SM U-spin based analysis (Grossman, Ligeti, Perez, Petrov, Silvestrini, AK)

• expect similar result for ϕ_{12}^M , related to ϕ_{12}^{Γ} via dispersion relations

Current exp. sensitivity

$$\rightarrow$$
 > O(I0) window for NP in ϕ_{12}

 \checkmark LHCb/Belle II or tau/charm factory could measure ϕ_{12}^{Γ} , thus isolating short distance NP in ϕ_{12}^M

High P_T

Higgs couplings

- if NP then Higgs couplings could be modified
- if EFT description valid

$$\Delta \mathcal{L}_Y = -\frac{\lambda'_{ij}}{\Lambda^2} (\bar{f}^i_L f^j_R) H(H^{\dagger} H) + h.c. + \cdots$$

• therefore, in general

Giudice, Lebedev, 0804.1753 Agashe, Contino, 0906.1542 Goudelis, Lebedev, Park, 1111.1715 Arhrib, Cheng, Kong, 1208.4669 McKeen, Pospelov, Ritz, 1208.4597 Blankenburg, Ellis, Isidori, 1202.5704 Harnik, Kopp, Zupan 1209.1397

$$\mathcal{L}_Y = -m_i \bar{f}_L^i f_R^i - Y_{ij} (\bar{f}_L^i f_R^j) h + h.c. + \cdots$$

- new neutral currents
 - flavor diagonal @LHC
 - flavor violating @Belle2 and LHC
- both are important diagnostics

*slide on loan from Zupan, Snowmass Seattle

- what is a reasonable aim for precision on Y_{ij} ?
 - if off-diagonals are large ⇒ spectrum in general not hierarchical
 - no tuning, if

$$\left| |Y_{ au\mu}Y_{\mu au}| \lesssim rac{m_{\mu}m_{ au}}{v^2}
ight|$$

Cheng, Sher, 1987

• different flavor models give

Dery, Efrati, Hochberg, Nir, 1302.3229

Model	$R_{ au^+ au^-}$	$X_{\mu^+\mu^-}/(m_{\mu}^2/m_{ au}^2)$	$X_{\mu au}$
SM	1	1	0
NFC	$(V_{h\ell}^* v / v_\ell)^2$	1	0
MSSM	$(\sin \alpha / \cos \beta)^2$	1	0
MFV	$1+2av^2/\Lambda^2$	$1-4bm_{ au}^2/\Lambda^2$	0
FN	$1 + \mathcal{O}(v^2/\Lambda^2)$	$1 + \mathcal{O}(v^2/\Lambda^2)$	$\mathcal{O}(U_{23} ^2 v^4/\Lambda^4)$
GL	9	25/9	$\mathcal{O}(X_{\mu^+\mu^-})$

*slide on permanent loan from Zupan

FLAVOR VIOLATING HIGGS COUPLINGS

Harnik, Kopp, Zupan, 1209.1397

- B-factories: the best sensitivity for FV higgs couplings to light quarks
- LHC: best constraints on *h*-tc, *h*-tu and $h \rightarrow \tau \mu$, τe

see also Davidson, Verdier, 1211.1248; Arhrib, Cheng, Kong, 1210.8241; Dery, Efrati, Hochberg, Nir, 1302.3229; Blankenburg, Ellis, Isidori, 1202.5704; Atwood, Gupta, Soni, 1305.2427, ...

*from the Zupan collection

Bounds on CP violating Higgs-top coupling from EDMs

Brod, Haisch, Zupan in prep

Left: Bar-Zee contributions to electron and quark EDMs, quark chromo-EDMs. Right: contribution to Weinberg's operator

General Yukawa coupling for fermion f (in the SM $\kappa_f = 1, \tilde{\kappa}_f = 0$)

$$\mathcal{L} \supset -rac{y_f}{\sqrt{2}} \left(\kappa_f \, ar{f} f + i ilde{\kappa}_f \, ar{f} \gamma_5 f
ight) h$$

A top quark CP violating coupling $\tilde{\kappa}_t$ would induce contributions to the charged lepton and neutron EDMs via the above diagrams

right: projected future constraints, for 1000 x improvement in electron EDM bound, 300 x improvement in neutron EDM bound, and expected Higgs production sensitivity with 3000 fb at LHC

(19) will be interesting to compare with sensitivity of direct measurements of $\tilde{\kappa}_t$, eg via CPV triple products

(above plots assume SM Higgs couplings to electron, light quarks; weaker EDM bounds follow from Weinberg's operator alone)

Charm tagging at the LHC ATLAS EPS 2013

• In new ATLAS search for stop decay to charm + neutralino ($\tilde{t} \rightarrow c + \chi^0$), charm jet tagging has been employed for the first time at LHC

ATLAS-CONF-2013-068

 charm jets identified by combining "information from the impact parameters of displaced tracks and topological properties of secondary and tertiary decay vertices" using multivariate techniques

> • 'medium' operating point: c-tagging efficiency = 20%, rejection factor of 5 for b jets, 140 for light jets. #'s obtained for simulated $t\bar{t}$ events for jets with $30 < p_T < 200$, and calibrated with data

Significance of charm tagging for flavor physics:

- increased sensitivity to flavor violating (s)top + (s)charm production, or flavor violating t -c couplings in top decay
- $\bullet~$ perhaps provide tests for horizontal flavor symmetries at high p_{T} ,

e.g. discriminate between SU(2) vs. U(1) horizontal symmetries ?

- charm squark vs up squark masses?
- $\tilde{t} + \tilde{c}$ production vs. $\tilde{t} + \tilde{u}$ production?
- analogous sensitivities in models with partially composite quarks: charm partners, charm partners vs. up partners?

Flavor, naturalness, and the LHC

naturalness of the weak scale

new fields with large couplings to the Higgs, introduced to \blacktriangleright stabilize the Higgs mass, should have $\leq O(\text{TeV})$ masses, eg. stops, LH sbottom

pre LHC:

FCNC + naturalness — horizontal flavor symmetries

The motivation was model-dependent: certain dynamics can automatically yield flavor blind NP to very good approx, eg. supersymmetry breaking via gauge or anomaly mediation

today:

LHC bounds on NP + naturalness — horizontal flavor symmetries

two strategies for flavor symmetries were introduced in context of supersymmetry: non-Abelian and Abelian

- non-Abelian (2+1) structure: first two families are doublets of an SU(2) horizontal symmetry, the third family is a singlet Dine, Leigh, AK '93; Pomarol, Tomassini '95
- $SU(2) \longrightarrow$ squarks / sleptons of first two families approximately degenerate. if their masses also >> stop masses, FCNC, eg $\epsilon_K, \mu \rightarrow e\gamma$ are OK, and maintain naturalness, evade LHC squark bounds

effective susy, or natural susy spectrum; Cohen, Kaplan, Nelson '96

- could yield observable $\mu
 ightarrow e \gamma$, neutron EDMs in future 0 experiments. CPV in D mixing is small
- can be extended to explain fermion mass hierarchies 0 - most recently, see Dudas, Gersdorff, Pokorski, Ziegler '13

Abelian U(I)'s: with appropriate charge assignments can explain quark mass hierarchy and obtain alignment of the down squark and down quark mass eigenstates in flavor space

```
Nir, Seiberg '93;
Leurer, Nir, Seiberg '93
```


 $\leftarrow \epsilon_K$ is sufficiently small

residual misalignment between up squark and up quark mass eigenstates in flavor space, (u, c) vs (\tilde{u}, \tilde{c})

 $\phi_{12} = O(10\%)$ CP violation in $D - \overline{D}$ mixing is possible

> $\mu
> ightarrow e\gamma$, neutron EDMs could be observed in future experiments

In the strategy: flavor symmetries which yield controlled violations of R parity (rather than ad-hoc assumption that it holds)

- sufficient suppression of proton decay, and

Smith, '08; Csaki, Grossman, Heidenreich, '11; Bhattacherjee et al, '13
 eliminates standard SUSY missing E_T (MET) signature: substantialy weakens squark, gluino mass bounds Berger, Perelstein, Saelim, Tanedo, '13

eliminates dangerous FCNC

• can follow from imposing MFV SM flavor symmetry $U(3)^3$

Smith, '08; Csaki, Grossman, Heidenreich, '11; Bhattacherjee et al, '13

 could follow from U(I) Abelian models which also yield quark/squark alignment Montheaux '13

- alignment and naturalness at the LHC
 - squark masses of same order but highly non- degenerate, eg,

 $m_{\tilde{u}} \neq m_{\tilde{c}}, \quad m_{\tilde{u}}, m_{\tilde{c}} > m_{\tilde{t}}$

stop can be light – naturalness

Mahbubani, Papucci, Perez, Ruderman, Weiler '12

*from G Perez "Flavorful naturalness and the top charm frontier" La Sapienza 2013

Sea LH squarks vs. valence RH squarks

Kadosh, Paride, Perez to appear

Adding flavor constraints (Δm_D) for LH squarks:

*adapted from G Perez "Flavorful naturalness and the top charm frontier" La Sapienza 2013

Summary

phenomenal progress in flavor measurements

- theoretical progress probably required on SM predictions for $B \to K^* \mu^+ \mu^-$ CP conserving observables at low q^2 (with exception of lowest bin)
- observation of $B_s \to \mu^+ \mu^-$! entering an exciting time in which can test for SU(2) based symmetry structure via comaprison to $B_d \to \mu^+ \mu^-$
- O(10) window for new physics in D mixing CP violation to be probed in the coming years
- tests for new physics in flavor violating Higgs decays are becoming interesting

naturalness + FCNC+ LHC bounds suggest the existence of flavor symmetries

- possibility to evade LHC bounds on 1st two generation squarks via light "sea" squarks (charm, strange squarks) in Abelian alignment models- they can be relatively light
- new charm jet tagging capability could help to test this scenario further
- similar in spirit search strategies for composite Higgs with partially composite quarks
 Fraille, Flacke, Delauney, Lee, Perez in prep
- alignment models could lead to O(10%)
 CPV in D mixing
- In abelian and non-abelian models $\mu \to e \gamma$ and neutron EDM could be at observable levels in future experiments