I have so much to cover in this talk I don't have time for the standard apology about not covering everything properly so please read this and accept my apology

Flavor Physics at Snowmass

R. Bernstein, FNAL DPF 2013

see Hewett et al., <u>1205.2671</u> and Report of Heavy Quarks Working Group <u>http://www.ph.utexas.edu/~heavyquark/</u> Snowmass Flavor Reports in Preparation

Snowmass Talks: https://indico.fnal.gov/conferenceTimeTable.py?confld=6890#all.detailed

R. Bernstein, FNAL

1

Flavor Physics from Snowmass DPF 2013

Snowmass Conveners

- Intensity Frontier: JoAnne Hewett and Harry Weerts
 - Quark Flavor Physics:
 - Joel Butler, Zoltan Ligeti, Jack Ritchie
 - *K*, *D*, & *B* Meson decays and properties
 - Charged Lepton Processes
 - Brendan Casey, Yuval Grossman, David Hitlin
 - precision measurements with muons and taus
 - searches for rare decays

R. Bernstein, FNAL

Future Flavor Physics Program

- B Physics
 Charm
 - BELLE-II
 BELLE-II
 - LHCb LHCb
 - ATLAS/ ATLAS/ CMS CMS
 - BES-III
 - Project X projectx.fnal.gov physics: <u>1306.5009</u>
- *τ*-charm

Panda

- on-shore
- Kaons
 Muons
 - KLOE-2 g-2
 - NA62
 - TREK
 - KOTO
 - ORKA
 - PX:

Kaons

- g-2
 - MEG Upgrades
 - Mu3e
 - Mu2e
 - PX: Muons
 - COMET

what are all these people doing?

R. Bernstein, FNAL

3

Role of Flavor Physics

- Main Goal over coming decades is to find BSM physics
- Wide consensus that we need to look in many places: colliders, neutrinos, and flavor physics
- Flavor Physics is
 - interconnected: measurements in one sector imply results in other sectors
 - complementary: constructive interference among measurements in searching for and understanding new physics

Not a Bad Track Record...

- Much of the SM structure came from flavor physics!
 - β decay predicted the neutrino
 - Absence of FCNC in $K_L \rightarrow \mu^+ \mu^-$ required charm and GIM mechanism
 - Direct CP-violation and CKM matrix of 3 generations
- And now, constraints on new physics to $>10^3$ TeV/c²

Flavor Physics: Rare Processes and Precision Measurements

adapted from V. Cirigliano and M.J. Ramsey-Musolf, 1304.0017

R. Bernstein, FNAL

Flavor Physics from Snowmass DPF 2013

- These measurements do not give the same information
- They check and reinforce each other in a web of measurements
- Complementarity and interconnectedness are a strength of a diverse program
- Taken together, provide great model discrimination and discovery potential

Flavor Physics is Fundamental:

- Because it speaks to the generation puzzle:
 - why is there more than one generation of quarks and leptons?
- Because knowing a mass scale is not enough:

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + \frac{\mathrm{flavor\ structure\ and\ coupling\ strength}}{\Lambda^2}$$
dim-6 example

- the Lagrangian has a numerator and a denominator (we tend to focus on the denominator)
- Because flavor physics provides discovery and discrimination

Flavor Physics and Mass Scales:

- There's already a problem:
 - the hierarchy problem: $\Lambda \sim 1 \text{ TeV/c}^2$
 - flavor bounds: $\Lambda > 10-10^5 \text{ TeV/c}^2$

- depends on numerator!
- BSM ideas *must* explain the flavor problem:
 - "Natural" to have seen flavor effects already
 - Back to the numerator: Minimal Flavor Violation, for example, is an assumption
 - Flavor is an *input*, not a *output*

Part I: High Mass Scales

- Heavy particles can be indirectly accessed through low energy processes
 - for example, beta decay
 - if $g \approx e$, $M_W \approx 100 \ GeV/c^2$
- And through loops
 - g-2 of the muon

 $\sqrt{2}$ $8M_W^2$

A. Czarnecki and W.J. Marciano, Phys. Rev. D64 013014 (2001) in MSSM $\Delta a_{\mu} \approx 130 \times 10^{-11} \tan \beta \, \mathrm{sgn} \, \mu \, (\frac{100 \, \mathrm{GeV}}{M_{\mathrm{SUSY}}})^2$

 $\bar{\chi}^{\circ}$

12

R. Bernstein, FNAL

Part I: High Mass Scales

- And through rare decays
 - in muons:

 $\mu \to e\gamma \text{ or } \mu N \to eN$ $\mathcal{BR}(10^{-16}) \Rightarrow M_{\rm NP}(1000 \text{ TeV/c}^2)^N$

• in kaons

 $K_L \to \mu e$ via leptoquark $M_{\rm NP} \approx 200 \ {\rm TeV/c^2} \left(\frac{10^{-12}}{\mathcal{BR}}\right)^{0.25} \bar{d}$

R. Bernstein, FNAL

S

 e^-

N

 μ^-

 e^+

Part II, The Generation Puzzle: "Who ordered that?"

After the μ was discovered, it was logical to think the muon is just an excited electron:

- expect BR($\mu \rightarrow e\gamma$) $\approx 10^{-4}$
- Unless another v, in Intermediate Vector Boson loop, cancels (footnote in <u>Feinberg</u>, 1958)

$$\mu \underbrace{\nu_{\mu}}_{e} \qquad \nu_{\mu} = \nu_{e} \qquad \mu \underbrace{\nu_{\mu}}_{e} \qquad \varphi \qquad \mu \underbrace{\nu_{\mu}}_{e} \qquad \varphi \qquad \psi_{\mu} = \nu_{e}$$

¹Unless we are willing to give up the 2-component neutrino theory, we know that $\mu \rightarrow e + \nu + \overline{\nu}$.

10.1103/ PhysRev. 110.1482

R. Bernstein, FNAL

Modern Phrasing

- New physics flavor problem:
 - no new physics at the TeV scale that would mediate charged lepton flavor violation (CLFV)
 - there must be a very high mass scale or a very great suppression in the couplings
 - so you have to look for extremely rare decays or make precise measurements

Charged Lepton Flavor Experiments

clfv2013.le.infn.it

RHB and P.S. Cooper: 1307.5787v2

- So there's been lots of study since 1940 or so:
 - muons: $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e$, $\mu N \rightarrow eN$
 - PSI, and now FNAL, J-PARC, Project X
 - taus: $\tau \rightarrow e\gamma, \tau \rightarrow 3l$
 - BELLE, BaBar, moving to BELLE-II, LHC
 - kaons: $K_L \to \mu e, \pi^o \mu e, \dots K^+ \to \pi^o \mu e, \pi^- l^+ l^+, \pi^+ l^+ (l')^-$
 - BNL, now CERN NA62 and FNAL/ORKA and PX

16

MEG: $\mu \rightarrow e\gamma$

- Measurement: < 5.7 x 10⁻¹³ @ 90%CL
 - stopped muons at PSI

MEG: Status and Upgrades

• Background increases with rate, resolution:

$$\mathcal{B}(\text{one event background}) \propto \left(\frac{R_{\mu}}{D}\right) (\Delta t_{e\gamma}) \frac{\Delta E_e}{m_{\mu}/2} \left(\frac{\Delta E_{\gamma}}{15m_{\mu}/2}\right)^2 \left(\frac{\Delta \theta_{e\gamma}}{2}\right)^2$$

- Want as low rate as feasible, constant, and as good energy and angular resolution as possible: two quadratic terms, one in energy, one in angle.
 - so, is $m_{\mu} = E_e + E_{\gamma}$ and are they back-to-back?
 - innovative new tracker and upgrade LXe calorimeter
- MEG will improve photon energy and angular resolution for upgrade
- R. Bernstein, FNAL18Flavor Physics from Snowmass DPF 2013

Muon-to-Electron Conversion
muon converts to electron in the field of a nucleus

$$\mu^- N \rightarrow e^- N$$

$$R_{\mu e} = \frac{\Gamma(\mu^- + N(A,Z) \rightarrow e^- + N(A,Z))}{\Gamma(\mu^- + N(A,Z) \rightarrow \text{all muon captures})}$$

- Charged Lepton Flavor Violation (CLFV)
 - manifest beyond Standard Model physics
 - SES of 2.5 x 10^{-17} , 0.4 evt bkg; 5 σ discovery at ~ 10^{-16}
 - Standard Model Background of 10⁻⁵⁴

21

R. Bernstein, FNAL

Flavor Physics from Snowmass DPF 2013

Measuring 10⁻¹⁷ in Collider Units

- The captured muon is in a 1s state and the wave function overlaps the nucleus (picture ~ to scale)
- We can turn this into an effective luminosity
- Luminosity = density x velocity

$$|\psi(0)|^2 \times \alpha Z = \frac{m_{\mu}^3 Z^4 \alpha^4}{\pi} = 8 \times 10^{43} \text{ cm}^{-2} \text{ sec}^{-1})$$

- Times 10¹⁰ muons/sec X 2 μ sec lifetime
- Effective Luminosity of 10⁴⁸ cm⁻²sec⁻¹
 - A. Czarnecki, <u>clfv.le.infn.it</u>

R. Bernstein, FNAL

Next Generation Muon CLFV

- Extensive discussions of $\mu N \rightarrow eN$ upgrades at Project X
- New experimental designs for $\mu \rightarrow 3e$, $\mu \rightarrow e\gamma$
- Beyond planned upgrades: <u>Hitlin, Knoepfel et al., 1307.1168</u>
 - focus on converting the photon and trading rate (loss to conversion) for resolution (magnetic p better than calorimeter *E*)

 $\mathcal{B}(\text{one event background}) \propto \left(\frac{R_{\mu}}{D}\right) (\Delta t_{e\gamma}) \frac{\Delta E_e}{m_{\mu}/2} \left(\frac{\Delta E_{\gamma}}{15m_{\mu}/2}\right)^2 \left(\frac{\Delta \theta_{e\gamma}}{2}\right)^2$

- plus pointing to vertex for a pair of tracks
- Use flux to recover rate and time structure at Project X to have multiple experiments in one site
 R. Bernstein, FNAL
 25
 Flavor Physics from Snowmass DPF 2013

Common Framework for All Three Experiments

$$\mathcal{L}_{\text{CLFV}} = \frac{m_{\mu}}{(\kappa+1)\Lambda^2} \bar{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{\kappa}{(1+\kappa)\Lambda^2} \bar{\mu}_L \gamma_{\mu} e_L (\bar{u}_L \gamma_{\mu} u_L + \bar{d}_L \gamma_{\mu} d_L)$$

Competitive with other channelsR. Bernstein, FNAL28

Flavor Physics from Snowmass DPF 2013

adapted by Hitlin from de Gouvea and Vogel 1303.4097v2

Evolution of Mu2e

Knoepfel et al., <u>1307.1168</u>

 If a discovery, then a different nucleus is the next step; Mu2e upgrades to improve the limit, and studying higher Z appears promising

V. Cirigliano, R. Kitano, Y. Okada, P. Tuzon, 0904.0957, Phys.Rev. D80 (2009) 013002

Extensive Program at e^+e^-

- 48 τ modes, typically at few x 10⁻⁸
- Expect x10 x100 in many modes at BELLE-II

R. Bernstein, FNAL

31 Flavor Physics from Snowmass DPF 2013

LHCb and CLFV $_{\scriptscriptstyle B}$

B. Khanji, clfv2013.le.infn.it,

• τ , *B*, and *D* Modes

also see <u>dx.doi.org/10.1016/j.physletb.2013.05.063</u>, <u>dx.doi.org/10.1016/j.physletb.2013.06.010</u>, <u>1307.4889</u>

• already published:

90% CL	LHCb	Comment
$\tau \rightarrow 3\mu$	8.3 x 10 ⁻⁸	Belle is x4 better
$\tau \rightarrow p \mu^+ \mu^-$	4.6 x 10 ⁻⁷	first ever!
$\tau \rightarrow \overline{p} \mu^+ \mu^-$	5.4 x 10 ⁻⁷	first ever!

- Looking forward to improvements
- competition between statistics of LHCb, neutral modes at BELLE-II. Also CMS/ATLAS! Stay tuned.

Run at FNAL in 2016; if central value stays constant, will be $\sim 5\sigma$ instead of $\sim 3.5\sigma$

- Theoretical Uncertainties:
 - Current HLBL would need to be off by ~11σ to explain central value
 - target lattice error of 15% keeps pace with next measurement
 - Smaller uncertainty on HVP

new q-2 proposal

-300

 $a_{\mu} - a_{\mu}^{exp}$

External photm -200

= P'-P

-100

from Tom Blum

quark loop

Hadronic

HMNT 07 (e⁺e⁻-based)

Davier et al. 09/1 (τ-based) -157±52

Davier et al. 09/2 (e⁺e⁻ w/ BABAR -255±49 HLMNT_10 (e⁺e⁻ w/ BABAR)

Davier et al. 09/1 (e⁺e⁻)

DHMZ 10 (r newest)

DHMZ 10 (e⁺e⁻ newest) -287±49

BNL-E821 (world average)

 -285 ± 51

-312±51

 -259 ± 48

 -195 ± 54

-700

JN 09 (e⁺e⁻) -299±65

Ring at FNAL!

cue "Close Encounters" music...

R. Bernstein, FNAL

34 Flavor Physics from Snowmass DPF 2013

- Flavor Changing Neutral Current Process
- Precise Theoretical Predictions Possible:
 - Short-distance can be calculated precisely
 - Semileptonic *K*_L decays provide matrix elements
 - Quadratic GIM suppresses long-distance
- So exquisitely sensitive to BSM physics

Interconnections

36

- So now we've seen B_s→µµ at >3.5, 4.3σ at LHCb and CMS (consistent with SM ~3 x 10⁻⁹ with ~30% errors)
- The K→πvv processes are related: basically same diagrams
- Can probe new physics very precisely in kaon system; many, many papers on exploiting these relationships

LHCb,1211.2674 and CMS, 1307.5025

R. Bernstein, FNAL

Worldwide Effort: CERN NA-62

- Decay-in-flight
- Builds on NA-31/NA-48
- Expect ~55 K⁺→π⁺νν events/yr with ~7 bkg events for ~100 total events, or 10% measurement of branching fraction
- Complementary technique to stopped K⁺ at ORKA

E. Worcester, Kaon 2013

R. Bernstein, FNAL

Worldwide Effort: J-PARC KOTO

- Pencil beam decay experiment
- Improved J-PARC beam line
- 2nd generation detector building on E391 at KEK
- Re-using KTeV CsI crystals for better resolution and veto power

J. Xu, this conf.

• Expect ~ 3 $K_L \rightarrow \pi^o v \overline{v}$ (SM)

E. Worcester, Kaon 2013

R. Bernstein, FNAL

Overconstrain System

35

30

Grossman-Nir bound

 ε'/ε Strikes Back

direct/indirect CP violation

E949

- Strong constraint for Z-Penguins
- Stringent correlation present in MSSM, RS, compositeness
- Br($K_L \to \pi^0 \nu \bar{\nu}$) [10⁻¹¹] ($\bar{\nu} \nu \bar{\nu} \to 15$] 10 $\epsilon'/\epsilon \in [0.5, 2] (\epsilon'/\epsilon)_{SM}$ **Measurements** $\epsilon'/\epsilon \in [0.2, 5] (\epsilon'/\epsilon)_{\rm SM}$ of CP in B X system, $B \rightarrow \mu \mu$, 5 10 15 20 25 30 35 Br $(K^+ \rightarrow \pi^+ \nu \overline{\nu} (\gamma))$ [10⁻¹¹] $K^{*}l^{+}l^{-}$ in good [see S. Jäger, talk at NA62 Physics Handbook Workshop; M. Bauer et al., arXiv:0912.1625 [hep-ph]] 17 agreement: rare U. Haisch, PXPS2012, https://indico.fnal.gov/ conferenceDisplay.py?ovw=True&confld=5276 kaon decays offer "smoking-gun" opportunities

41

 $|C_{\rm NP}| \leq 0.5 |\lambda_t C_{\rm SM}|$

 $|C_{\rm NP}| \le |\lambda_t C_{\rm SM}|$

 $|C_{\rm NP}| \le 2 \left| \lambda_t C_{\rm SM} \right|$

 $C_{\rm NP} = |C_{\rm NP}| \, e^{i\phi_C}$

More Interconnections

- Rare *B*, *D*, *K* decays and Neutrinoless Double Beta Decay:
 - are neutrinos Majorana?
 - leptogenesis from Majorana phases:
 - linked to baryogenesis and Sakharov conditions, requiring C or CP violation
 - neutrino mass from CKM phases
 - what is the source of neutrino mass?
 - Higgs or something else or both?

W. Buchmüller, R.D. Peccei, and T. Yanagida, 10.1146/annurev.nucl. 55.090704.151558

R. Bernstein, FNAL

Flavor Physics from Snowmass DPF 2013

very complicated and no direct connection to low-energy observables; see <u>Mu-Chun Chen</u> <u>at Snowmass</u>

Structure of CKM Matrix

• *K*, *B* and *D* decays:

combination of many experiments over years!

- Four CKM parameters plus *W*, *Z* and quark masses
- plus ~100 other flavor changing operators
- see Zoltan Ligeti, Snowmass
 ~20% corrections from new physics in loops still allowed
- R. Bernstein, FNAL44Flavor Physics from Snowmass DPF 2013

Incomplete List of Important Topics I Won't Cover

many talks at this conf.

- CPV in $\tau \rightarrow K \pi v$ (2.8 σ)
- V_{ub} , V_{cb} inclusive/exclusive tension
- $D^{\circ} \overline{D}^{\circ}$ mixing
- $B \rightarrow D^* \tau v$ tension persists, $B \rightarrow \tau v$ tension gone
- α , β , γ determinations
- CP Asymmetries in

$$S_{J/\psi K_S} - S_{\phi K_S}, \ S_{\psi K_S} - S_{\eta' K_S}, \ S_{J/\psi \phi} - S_{\phi \phi} \dots$$

Where to Look?

- 2nd-3rd generation fermions (escape bounds from kaon physics)
 - e.g. in SUSY GUTs the near-maximal θ_{23} may imply large mixing between s_R and b_R and \tilde{s}_R and \tilde{b}_R
- $B \rightarrow X_{s\gamma}$ especially interesting (3% at SuperKEKB)
 - SUSY in loops, ~ analogous to $\mu \rightarrow e \gamma$ or $\mu N \rightarrow e N$ diagrams

finding deviations from SM

 $B \rightarrow X_{s\gamma}$

is complementary to $\mu \rightarrow e\gamma$ discovery

R. Bernstein, FNAL

Role of Lattice

- Experimental improvements demand better lattice calculations: e.g. g-2 or f_B or ε_K
 - how can lattice methods be useful for interpreting data?
- Lattice has matured and we need to renormalize our attitude

Laiho at Snowmass

Van de Water Colloquium at Snowmass

Laiho, Lunghi & Van de Water, Phys.Rev.D81:034503,2010

Lattice, CKM, B and K modes

48

- ~30% on *B* modes: how much better?
- 5% measurement of $K^+ \rightarrow \pi^+ v \overline{v}$ at ORKA SM BR ~ 7.8 x 10⁻¹¹
- ~1000 SM $K_L \rightarrow \pi^o v \overline{v}$ events at Project X SM BR ~ 2.4 x 10⁻¹¹
- Point about lattice and CKM:
 - B meson statistical error will get smaller but we need a better f_B determination from the lattice to get below ~8%
 - K⁺ errors need better CKM determinations (another interconnection)

adapted from D. M. Straub, arXiv:1012.3893

R. Bernstein, FNAL

B Physics: Future Facilities

- SuperKEKB and BELLE-II: 50 x 10⁹ BB pairs
 - Peak *L* ~ 8 x 10³⁵ cm⁻² s⁻¹, x 40 KEKB, 50 ab ⁻¹ by 2023

B Physics at LHC

• LHCb

many talks at this conf.

- 3 fb⁻¹ at 7-8 TeV, 5-7 3 fb⁻¹ at 13 TeV by 2018
- 50 fb⁻¹ long-term requires upgrade (2018)
 - replacement or upgrade of most detector systems
 - trigger changes to readout at 40 MHz, software filter
- 8% measurement of $B_s \rightarrow \mu\mu$ (x3 better than current, but need better lattice measurement to improve past that)
- With ATLAS and CMS, a deep and important program

Role of Charm Physics

- SM very successful in over-constraints of CKM and not done yet *(sadly leaving out top flavor*)
- *physics*)
 But rare decays and CP are a path we should take
 - and the bramble of long-distance might be cleared up with advances on the lattice
- Can look at physics of up-quarks in FCNC:
 - *D*^o-*D*^o mixing, direct and mixing induced CP, rare decays.

• One example (should be < 0.1%) $\Delta A_{CP} = A_{CP}(D^{\circ} \to K^{-}K^{+}) - A_{CP}(D^{\circ} \to \pi^{-}\pi^{+}) = (-0.645 \pm 0.180)\%$ $\Delta A_{CP} = 0.49 \pm 0.30 \pm 0.14(\pi \text{ tagged}), -0.34 \pm 0.15 \pm 0.14(\mu \text{ tagged})$

51

Charm Facilities

- More Charm Produced at LHC than B's Produced at LHC and in e⁺e⁻ at Y(4s)
- Tau-Charm Factories
 BESIII, 0911.4960v1
 - BES-III underway at BEPCII (Beijing), 10³³ cm⁻² s⁻¹, x10 CLEO-c

- BINP Super c/τ and Italy post-SuperB and Turkey
- plus $p\overline{p} \rightarrow c\overline{c}$ in Panda at FAIR (GSI, Darmstadt)

R. Bernstein, FNAL

Electric Dipole Moments

- CP Violation and the Matter/Antimatter
 Asymmetry in the Universe
 - · Sakharov Criteria
 - Baryon Number Violation
 - · CP & C violation
 - · Departure from Thermal Equilibrium

- Standard Model CP violation is insufficient
 - Must search for new sources of CP
 - B factories, LHC, Neutrinos, EDMs
- Electroweak Baryogenesis still viable

<u>M. Carena et al., hep-ph/9202409,</u> <u>Nucl. Phys. B 503, 387 (1997)</u>

Li, Profumo, Ramsey-Musolf : 0811.1987

Cirigliano, Li, Profumo, Ramsey-Musolf: JHEP 1001:002,2010

R. Bernstein, FNAL

.

.

- EDMs are a unique and powerful probe into non-CKM sources of CP violation (strong CP problem)
- Muon EDM in the SM < 10^{-36} : a discovery is NP
 - Most models predict linear scaling, so electron EDM provides a strong constraint: d_e< 1.6x 10⁻²⁷ e-cm
 - · But some predict quadratic or cubic scaling

EDMs and SUSY

- SUSY Contribution
 - electroweak baryogenesis?

<u>Y.Li, S. Profumo, M. Ramsey-Musolf,</u> <u>PRD 78, 075009, 2008;</u> PLB 673, 95, 2009.

Table 1: Summary of how the CP-violating sources in MSSM generate variousCP-odd operators at one-loop and two-loop level.

CP-violating phases	one-loop contribution	two-loop contribution		
$\phi_{e,u,d}$	$ d_{u,d,e}^{1-loop}, \tilde{d}_{u,d}^{1-loop}, C_{ff'} $	no		
$\phi_{\mu,c,s}$	no	no		
$\phi_{\tau,t,b}$	no	$d_{u,d,e}^{2-loop}(\tilde{t},\tilde{b},\tilde{\tau}),\tilde{d}_{u,d}^{2-loop}(\tilde{t},\tilde{b},\tilde{\tau}),d^{3\mathrm{G}}$		
$\phi_{1,2}$	$\begin{bmatrix} d_{u,d,e}^{1-loop}, \tilde{d}_{u,d}^{1-loop}, C_{ff'} \end{bmatrix}$	$d^{2-loop}_{u,d,e}(\chi^{\pm,0})$		
ϕ_3	$\begin{bmatrix} d_{u,d}^{1-loop}, \tilde{d}_{u,d}^{1-loop}, C_{ff'} \end{bmatrix}$	$d^{3 m G}$		

Li, Profumo, Ramsey-Musolf 1006.1440

R. Bernstein, FNAL

- First line is about g-2; second line is about EDMs
 - planes x100 muon improvement in EDM comes along with FNAL g-2
- Longer Term Prospects:
 - Can choose E(r) to cancel first line in OR

http://www.bnl.gov/edm/

All-Electric variant proposed for *proton* EDM R. Bernstein, FNAL 56 Flavor Physics from Snowmass DPF 2013

Rare Isotope Storage Ring EDMs

 new possibility with Project X; heavy isotopes open new windows into EDMs with cross-checks of signals and unique possibilities

J. Engel, Michael J. Ramsey-Musolf, U. Van Kolck, 1303.2371

Table 1: Projected sensitivities for $^{221/223}$ Ra and the corresponding sensitivities in 199 Hg at TRIUMF, FRIB, and Project X.

Facility	TRIUMF-ISAC	FRIB (223 Th source)	Project X
Rate	$2.5 \times 10^7 \ { m s}^{-1}$	$1 \times 10^9 \mathrm{s}^{-1}$	$3 \times 10^{10} \ { m s}^{-1}$
# atoms	$3.5 imes 10^{10}$	$1.4 imes 10^{12}$	$4.2 imes 10^{13}$
EDM Sensitivity	$1.3 \times 10^{-27} \text{ e-cm}$	$2 \times 10^{-28} \text{ e} \cdot \text{cm}$	$5 \times 10^{-29} \text{ e} \cdot \text{cm}$
¹⁹⁹ Hg equivalent	$1.3 \times 10^{-29} \text{ e-cm}$	$2 \times 10^{-30} \text{ e} \cdot \text{cm}$	$5 \times 10^{-31} \text{ e} \cdot \text{cm}$

Theme: Complementarity

 People tend to think about the rows: "experiment X is best"

					1		
	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi Ks}$	***	**	*	***	***	*	?
$A_{\rm CP} \left(B \to X_s \gamma \right)$	*	*	*	***	***	*	?
$A_{7,8}(B\rightarrow K^*\mu^+\mu^-)$	*	*	*	***	***	**	?
$A_9(B \rightarrow K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \rightarrow \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\bigstar \bigstar \bigstar$ signals large effects, $\bigstar \bigstar$ visible but small effects and \bigstar implies that the given model does not predict sizable effects in that observable.

W. Altmanshofer et al. 0909.1333v2

R. Bernstein, FNAL

Theme: Complementarity

• Think about the columns: a combination of experiments is required

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi Ks}$	***	**	*	***	***	*	?
$A_{\rm CP}\left(B\to X_s\gamma\right)$	*	*	*	***	***	*	?
$A_{7,8}(B\rightarrow K^*\mu^+\mu^-)$	*	*	*	***	***	**	?
$A_9(B\to K^*\mu^+\mu^-)$	*	*	*	*	*	*	?
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \rightarrow \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \rightarrow e \gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\bigstar \bigstar \bigstar$ signals large effects, $\bigstar \bigstar$ visible but small effects and \bigstar implies that the given model does not predict sizable effects in that observable.

my take: brave experimenter cutting down models; model-builders might differ

R. Bernstein, FNAL

Flavor Physics Conclusions

- Flavor physics is an essential element in the international particle physics program
 - central component in discovering new physics
 - access to mass scales up to 10⁴ TeV/c² or beyond
 - huge power to distinguish among models with multiple, reinforcing measurements

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\rm SM} + \frac{\text{flavor structure and coupling strength}}{\Lambda^2}$$

Snowmass Conclusions

- US poised to become world leader in flavor physics
 - charged lepton flavor violation (Mu2e) and muon g-2
 - rare kaon decay program: ORKA
 - EDMs: muon, proton, isotopes
 - highly suppressed decays of strange, charm, and bottom quarks
 - measurements of CKM parameters, both in new physics and necessary inputs for other measurements
 - progress in the lattice is sharpening theory predictions
- US is part of this program through ATLAS, CMS, LHCb, BELLE-II, ...
- And can build on this physics with world-leading facility at Project X

Summary

- Rabi, the son of poor immigrants, reported that his mother made him a scientist. Every day when he returned home from school, rather than ask (as most mothers did), "What did you learn today?" Rabi's mother asked, "Izzy, did you ask any good questions?"
- Flavor Physics is about great questions

Additional Material

Not to Forget CLFV in Kaons

Figure 1: Lowest-order diagrams contributing to $K^+ \rightarrow \pi^- \mu^+ \mu^+$. The decay can proceed if the neutrino exchanged can annihilate itself, i.e., if it is its own antiparticle.

Figure 2: Schematic diagram of the NA48/2 experiment, showing drift chambers (DC1–4), trigger hodoscope (Hodo), NA48 liquid-krypton electromagnetic calorimeter (LKr), hadronic calorimeter (HAC), and muon vetoes (MUV).

R. Bernstein, FNAL

TREK: CP Beyond SM

- T-Violation in Charged K decays through polarization asymmetry in $K^+ \rightarrow \pi^o \mu \nu$
 - needs >100 kW
- Lepton Flavor Universality through

$$\frac{\Gamma(K \to ev)}{\Gamma(K \to \mu v)}$$

at J-PARC

The "Magic Momentum"

• We have to focus the muons and use electric quadrupoles; this shifts $\vec{\omega}_a$

$$\vec{\omega}_{a} = -\frac{q}{m} \begin{bmatrix} a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1}\right) \frac{\vec{\beta} \times \vec{E}}{c} \end{bmatrix} \quad \begin{array}{c} \text{plus an} \\ \text{EDM} \\ \text{term for} \\ \text{later} \\ \end{array}$$

• Choose the "magic momentum" 3.094 GeV/c and $\gamma = 29.3$

$$\vec{\omega}_{a} = -\frac{q}{m} \begin{bmatrix} a_{\mu} \vec{B} - \left(\begin{array}{c} 1 \\ a_{\mu} & \gamma^{2} - 1 \end{array} \right) \frac{\vec{\beta} \times \vec{E}}{c} \end{bmatrix}$$

R. Bernstein, FNAL 67 g-2 KPS Muon Symposium 10/25/2012

Cold g-2

• If cold, don't need E: no "magic momentum" required

$$\vec{\omega}_a = -\frac{q}{m} \left[a_\mu \vec{B} - \left(\frac{a_\mu}{\gamma^2 - 1} \right) \frac{\vec{B} \times \vec{E}}{c} \right]$$

$$\vec{\omega}_a = -\frac{q}{m} \left[a_\mu \vec{B} \right]$$

- And measure EDM $\frac{Qe}{2m} \left[\eta \left(\vec{\beta} \times \vec{B} \right) \right]$
- But muonium rate too low for now

CKM Fitter and UTfit

0.0

-0.2

0.0

- Why are these so different?
- Frequentist v. Bayesian
- CKMFitter uses Rfit for theory errors, which typically leads to less stringent constraints
- Use different estimates for hadronic matrix elements from lattice QCD
- Hopefully will start using identical inputs from FLAG

69 Flavor Physics from Snowmass DPF 2013

ρ

0.4

0.6

0.8

1.0

0.2

ORKA Status

- ORKA Approval Status:
 - Stage-1 (scientific) approval from Fermilab, CD-0 materials submitted to DOE-OHEP, in discussion with DOE on CD-0 schedule, active discussion with foreign partners.
- ORKA Support from US agencies:
 - Fermilab: Beamline design and CDF detector infrastructure preparation/ preservation ongoing now in advance of IARC operations in the CDF assembly hall commencing in FY15-Q1.
 - Explicit DOE-OHEP: Intensity Frontier (KA22) R&D proposal approved, administered through BNL. Steve Kettell is the R&D project manager.
 - Other US agencies: In active discussion with collaborators supported by the NSF.
- ORKA cost & schedule:
 - Recently completed a comprehensive cost review. Current estimate is \$50M (FY13) for the detector Project, three associated AIPs for the beamline, target, and dump work. 3-year construction period, goal of commencing operations at the end of the decade.

R. Bernstein, FNAL72Flavor Physics from Snowmass DPF 2013
Project X Evolution

	Stage-1: 1 GeV CW Linac driving Booster &	Stage-2: Upgrade to 3 GeV CW	Stage-3: Project X RDR
Program:	muon, n/eam programs	Linac	
MI neutrinos	515-1200 kW**	1200 kW	2450 kW
8 GeV Neutrinos	0-42 kW* + 0-90 kW**	0-84 kW*	0-172 kW*
8 GeV Muon program e.g, (g-2), Mu2e-1	0-20 kW*	0-20 kW*	0-172 kW*
1-3 GeV Muon program, e.g. Mu2e-2	80 kW	1000 kW	1000 kW
Kaon Program	0-75 kW** (<45% df from MI)	1100 kW	1870 kW
Nuclear edm ISOL program	0-900 kW	0-900 kW	0-1000 kW
Ultra-cold neutron program	0-900 kW	0-900 kW	0-1000 kW
Nuclear technology applications	0-900 kW	0-900 kW	0-1000 kW
	projectx.fna	l.gov	
R. Bernstein, FNAL	73	Flavor Physics f	rom Snowmass DI