Search for WWy and WZy Production and Anomalous Quartic Gauge Couplings in pp collisions at $\sqrt{s} = 8$ TeV

Patricia Rebello Teles On behalf of CMS Collaboration

Meeting of the American Physical Society Division of Particles and Fields Santa Cruz University, CA From 13th to 17th August, 2013

Gauge Boson Self-Interactions on Standard Model

From the non-abelian structure of SM gauge symmetry emerges naturally the triple and quartic gauge bosons vertex

$$\begin{aligned} \mathcal{L}_{GC_{SM}} &= i \frac{e}{\tan \theta_{W}} \left[(W_{\mu}^{-} W_{\nu}^{+} - W_{\nu}^{-} W_{\mu}^{+}) \partial^{\mu} Z^{\nu} + W_{\mu\nu}^{+} W^{-\mu} Z^{\nu} - W_{\mu\nu}^{-} W^{+\mu} Z^{\nu} \right] \\ &+ ie \left[(W_{\mu}^{-} W_{\nu}^{+} - W_{\nu}^{-} W_{\mu}^{+}) \partial^{\mu} A^{\nu} + W_{\mu\nu}^{+} W^{-\mu} A^{\nu} - W_{\mu\nu}^{-} W^{+\mu} A^{\nu} \right] \\ &+ \frac{e^{2}}{\tan^{2} \theta_{W}} (W_{\mu}^{+} W_{\nu}^{-} Z^{\mu} Z^{\nu} - W_{\mu}^{+} W^{-\mu} Z_{\nu} Z^{\nu}) \\ &+ \frac{e^{2}}{\sin^{2} \theta_{W}} (W_{\mu}^{+} W_{\nu}^{-} A^{\mu} A^{\nu} - W_{\mu}^{+} W^{-\mu} A_{\nu} A^{\nu}) \\ &+ \frac{e^{2}}{\tan \theta_{W}} \left[(W_{\mu}^{+} W_{\nu}^{-} (Z^{\mu} A^{\nu} + Z_{\nu} A^{\nu}) - 2W_{\mu}^{+} W^{-\mu} Z_{\nu} A^{\nu} \right] \\ &+ \frac{e^{2}}{2 \sin \theta_{W}} (W_{\mu}^{+} W_{\nu}^{-} W^{+\mu} W^{-\nu} - W_{\mu}^{+} W_{\nu}^{-\mu} W^{-\mu}) \end{aligned}$$

Detailed investigation of gauge boson self-interactions is crucial to test the SM gauge structure and explore new physics!

00

Self-Interactions through three gauge boson production channel

Three Gauge Boson Production is sensitive to the <u>Quartic Gauge Vertex</u>

Semileptonic decay mode has _____ higher Branching Ratio

Overview of Gauge Boson Production Cross Section

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP

WVγ Production Cross Section (expected @ NLO)

	Process	shape modeling	cross section [pb]	
nal	SM WW γ	MC	(NLO) 0.0582 ± 0.0138	
Sig	SM WZ y	MC	(NLO) 0.0121 ± 0.0029	
Backgrounds	Wγ+Jets	MC	(data) 10.872 ± 0.087	
	jet -> γ	data	data	
	Zγ+Jets	MC	(LO) 0.632 ± 0.126	
	tτγ	MC	(LO) 0.615 ± 0.123	
	Single Top + γ (inclusive)	MC	(NLO) 0.310 ± 0.011	

- pp collisions @ $\sqrt{s} = 8$ TeV ;
- Samples generated for PTy > 10 GeV, $|\eta| < 2.5$
- 2012 CMS Dataset with L = 19.3 fb-1;
- LO samples: Madgraph 5.1.3 and POWHEG; Pythia 6.426 (showering)
- NLO samples: aMC@NLO (K-factor 2.1)

Physics Objects Reconstruction Selection Criteria

Variable	Muons	Electrons	
Single lepton trigger p_T threshold	>24 GeV	>27 GeV	
			Lepto
InI	< 2.1	< 2.5, excluding 1.44 < η < 1.57	

Missing transverse energy (MET)	> 35 GeV	> 35 GeV	
Δφ(MET,jet)	>0.4	>0.4	Missing ET
W transverse mass (M _T)	> 30 GeV	> 30 GeV	

	Variable	Value
	p _T threshold	>30 GeV
Photon	Photon η	< 1.44
	Photon Isolation from jets ΔR	> 0.5
	Photon Isolation from leptons ΔR	> 0.5

Physics Objects Reconstruction Selection Criteria (cont.)

Variable	Value
Anti-k _T clustering distance parameter R	0.5
at least 2 jets above p_T threshold	30 GeV
Jet ŋ	< 2.4
Jet Isolation from leptons ΔR	> 0.3

Jets from PF algorithm

Additional selection requirements

Variable	Value		
di–jet invariant mass (M _{jj})	70 < M _{jj} < 100 GeV		
Δη (jet 1,jet 2)	< 1.4		
invariant mass of electron-photon pair $\rm M_{e}\gamma$	$ M_e \gamma - M_Z > 10 \text{ GeV}$		

Semileptonic decay mode cannot differentiate the two production processes WWy and WZy due to the detector di-jet mass resolution (\approx 10GeV) which is close to the mass difference between W and Z bosons. Therefore both channels were treated as a combined signal in this analysis.

Systematics Uncertanties

Source	Uncertainty
Wγ + Jets normalization	6.7%(mu), 7.9%(el)
jet -> γ	12% (30 GeV - 50 GeV)
	14% (50 GeV - 75 GeV)
	23% (75 GeV - 90 GeV)
	22% (90 GeV - 135 GeV)
	39% (> 135 GeV)
multijets	50%
Trigger Efficiency	1%
Lepton Selection Efficiency	2%
Jet Energy Resolution	1%
Jet Energy Scale	4.3%
Photon Energy Scale	1%
E T	1%
Anti-b Tag(tτγ)	11%
Anti-b Tag (single top + γ)	5%
Pileup modeling	1%
renormalization/factorization scale	23.4%
PDF	3.6%
Luminosity	4.4%

SM WVy Cross Section Results

Process	muon channel	electron channel	
	number of events	number of events	
W γ+jets	136.9 ± 3.5 ± 9.2 ± 0.0	101.6 ± 2.9 ± 8.0 ± 0.0	
WV+jet, jet -> γ	$33.1 \pm 1.3 \pm 4.6 \pm 0.0$	$21.3 \pm 1.0 \pm 3.1 \pm 0.0$	
MC tŦy	$12.5 \pm 0.8 \pm 2.9 \pm 0.5$	9.1 ± 0.7 ± 2.1 ± 0.4	
MC single top	$2.8 \pm 0.8 \pm 0.2 \pm 0.1$	$1.7 \pm 0.6 \pm 0.1 \pm 0.1$	
MC Z γ+jets	$1.7 \pm 0.1 \pm 0.1 \pm 0.1$	$1.5 \pm 0.1 \pm 0.1 \pm 0.1$	
multijets	$< 0.2 \pm 0.0 \pm 0.1 \pm 0.0$	$7.2 \pm 3.6 \pm 3.6 \pm 0.0$	
SM WW γ	$6.3 \pm 0.1 \pm 1.5 \pm 0.3$	$4.7 \pm 0.1 \pm 1.1 \pm 0.2$	
SM WZ y	$0.6 \pm 0.0 \pm 0.1 \pm 0.0$	$0.5 \pm 0.0 \pm 0.1 \pm 0.0$	
Total predicted	193.9 ± 3.9 ± 10.8 ± 1.0	147.6 ± 4.8 ± 9.6 ± 0.7	
Data	183	139	

- Cut & count approach based on selection criteria
- 322 eventsobservedinCMS2012dataagainst341.5±15.8eventspredicted.
- low statistics to measure the WVγ cross section
- an upper limit of 0.24 pb at 95%C.L. for WVy with photon pT > 10 GeV at 8TeV with 19.3 fb^{-1}

"Genuine" Quartic Vertex with Higher Dimension Operators

Dimension 6 Anomalous Quartic Gauge Couplings

$$\mathcal{L}_{aQGC} = \begin{pmatrix} a_{0}^{W} \\ 4g^{2} \end{pmatrix} \mathcal{W}_{0}^{\gamma} + \begin{pmatrix} a_{C}^{W} \\ 4g^{2} \end{pmatrix} \mathcal{W}_{c}^{\gamma} + \sum_{i} \kappa_{i}^{W} \mathcal{W}_{i}^{Z} + \mathcal{L}_{T,0} + \mathcal{L}_{T,1} + \mathcal{L}_{T,2}$$

$$\mathcal{W}_{0}^{\gamma} = -\frac{e^{2}g^{2}}{2} F_{\mu\nu}F^{\mu\nu}W^{+\alpha}W_{\alpha}^{-},$$

$$\mathcal{W}_{c}^{\gamma} = -\frac{e^{2}g^{2}}{4} F_{\mu\nu}F^{\mu\alpha}(W^{+\nu}W_{\alpha}^{-} + W^{-\nu}W_{\alpha}^{+}),$$

$$\mathcal{U}_{c}^{\gamma} = -\frac{e^{2}g^{2}}{4} F_{\mu\nu}F^{\mu\alpha}(W^{+\nu}W_{\alpha}^{-} + W^{-\nu}W_{\alpha}^{+}),$$

$$\mathcal{W}_{c}^{\gamma} = -\frac{e^{2}g^{2}}{2} F_{\mu\nu}Z^{\mu\alpha}(W^{+\nu}W_{\alpha}^{-} + W^{-\nu}W_{\alpha}^{+}),$$

$$\mathcal{W}_{c}^{\gamma} = -\frac{e^{2}g^{2}}{2} F_{\mu\nu}W^{\mu\alpha}(W^{+\nu}W_{\alpha}^{-} + W^{-\nu}W_{\alpha}^{+} + W^{-\nu}W_{\alpha}^{+}),$$

$$\mathcal{W}_{c}^{\gamma} = -\frac{e^{2}g^{2}}{2} F_{\mu\nu}W^{\mu\alpha}(W^{+\nu}W_{\alpha}^{-} + W^{-\nu}W_{\alpha}^{+} + W^{-$$

Dim6 ↔ Dim8 Anomalous Quartic Gauge Couplings

12

Dimension 8 Anomalous Quartic Gauge Couplings

$$\mathcal{L}_{aQGC} = \frac{a_0^W}{4g^2} \mathcal{W}_0^{\gamma} + \frac{a_C^W}{4g^2} \mathcal{W}_c^{\gamma} + \sum_i \kappa_i^W \mathcal{W}_i^Z + \mathcal{L}_{T,0} + \mathcal{L}_{T,1} + \mathcal{L}_{T,2}$$

$$\mathcal{L}_{T,0} = \operatorname{Tr} \left[\hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \right] \times \operatorname{Tr} \left[\hat{W}_{\alpha\beta} \hat{W}^{\alpha\beta} \right]$$
$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$
$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\beta\nu} \hat{W}^{\nu\alpha} \right]$$

Setting Exclusion Limits for the aQGC's

- PTdistributionwasused, after all selectioncriteria,astheobservable to set limitsontheaQGCparameters.
- Segregated by lepton flavor (independent inputs to the limit setter)

Exclusion Limits for Dim6 Anomalous Quartic Couplings (cont.)

 Exclusion limits for a0W and aCW parameters at 95%C.L., using photon pT as the observable

Exclusion Limits for Dim6 Anomalous Quartic Couplings (cont.)

$$\begin{array}{l} -12 \ (\text{TeV}^{-2}) < \ \kappa_0^W \ / \ \Lambda^2 < \ 10 \ (\text{TeV}^{-2}) \\ -18 \ (\text{TeV}^{-2}) < \ \kappa^W \ / \ \Lambda^2 < \ 17 \ (\text{TeV}^{-2}) \\ \end{array} \begin{array}{l} -12 \ (\text{TeV}^{-2}) < \ \kappa_0^W \ / \ \Lambda^2 < \ 12 \ (\text{TeV}^{-2}) \\ -19 \ (\text{TeV}^{-2}) < \ \kappa^W \ / \ \Lambda^2 < \ 18 \ (\text{TeV}^{-2}) \end{array} \end{array}$$

 Exclusion limits for k0W and kCW parameters at 95%C.L., using photon pT as the observable.

Exclusion Limits for Dim6 ↔ Dim8 Anomalous Quartic Couplings

Observed Limits	Expected Limits		
$\begin{array}{c c} -77 \ (\text{TeV}^{-4}) < \ f_{\text{M},0} / \ \Lambda^{4} < \ 81 \ (\text{TeV}^{-4}) \\ -131 \ (\text{TeV}^{-4}) < \ f_{\text{M},1} / \ \Lambda^{4} < \ 123 \ (\text{TeV}^{-4}) \\ -39 \ (\text{TeV}^{-4}) < \ f_{\text{M},2} / \ \Lambda^{4} < \ 40 \ (\text{TeV}^{-4}) \end{array}$	$\begin{array}{l} -89 \ (\text{TeV}^{-4}) < \ f_{\text{M},0} / \ \Lambda^{4} < \ 93 \ (\text{TeV}^{-4}) \\ -143 \ (\text{TeV}^{-4}) < \ f_{\text{M},1} / \ \Lambda^{4} < \ 131 \ (\text{TeV}^{-4}) \\ -44 \ (\text{TeV}^{-4}) < \ f_{\text{M},2} / \ \Lambda^{4} < \ 46 \ (\text{TeV}^{-4}) \end{array}$		
-66 (TeV ⁻⁴) < $f_{M,3}/\Lambda^4$ < 62 (TeV ⁻⁴)	-71 (TeV $^{-4}$) < f _{M,3} / Λ^4 < 66 (TeV $^{-4}$)		

$$\frac{f_{M,0}}{\Lambda^4} = -\frac{g^4}{M_W^2} \frac{\kappa_0^w}{\Lambda^2} \qquad \qquad \frac{f_{M,1}}{\Lambda^4} = \frac{g^4}{M_W^2} \frac{\kappa_c^w}{\Lambda^2} \\ \frac{f_{M,2}}{\Lambda^4} = -\frac{g^2 g'^2}{2M_W^2} \frac{\kappa_0^b}{\Lambda^2} \qquad \qquad \frac{f_{M,3}}{\Lambda^4} = \frac{g^2 g'^2}{2M_W^2} \frac{\kappa_c^b}{\Lambda^2}$$

$$a_{0,c} = 4g^2(k_{0,c}^w + k_{0,c}^b + k_{0,c}^m)$$

Exclusion Limits for Dim8 Anomalous Quartic Couplings

-25 (TeV ⁻⁴) < $f_{T,0}/\Lambda^4$ < 24 (TeV ⁻⁴) | -27 (TeV ⁻⁴) < $f_{T,0}/\Lambda^4$ < 27 (TeV ⁻⁴)

18

Overview of Anomalous WWγγ Quartic Couplings @95% C.L.

July 2013	LEP L3 limits D0 limits	=	CMS WW γ limits CMS $\gamma\gamma \rightarrow$ WW I	s imits	
Anomalous V	VWγγ Quartic Coupling limits @95% C	.L. Channel	Limits	L	٧s
		WWγ	[- 15000, 15000]	0.43fb ⁻¹	0.20 TeV
		$\gamma\gamma \to {\bf W}{\bf W}$	[- 430, 430]	9.70fb ⁻¹	1.96 TeV
a₀ [₩] /Λ ² TeV ⁻²		WW γ	[- 21, 20]	19.30fb ⁻¹	8.0 TeV
U	•••••	$\gamma\gamma \to \mathbf{W}\mathbf{W}$	[- 4, 4]	5.05fb ⁻¹	7.0 TeV
		WW γ	[- 48000, 26000]	0.43fb ⁻¹	0.20 TeV
		$\gamma\gamma \to \mathbf{W}\mathbf{W}$	[- 1500, 1500]	9.70fb ⁻¹	1.96 TeV
a ^w /∧² TeV ⁻²		WW γ	[- 34, 32]	19.30fb ⁻¹	8.0 TeV
		$\gamma\gamma ightarrow WW$	[- 15, 15]	5.05fb ⁻¹	7.0 TeV
f _{т,0} / л ⁴ ТеV ⁻⁴		WW γ	[- 25, 24]	19.30fb ⁻¹	8.0 TeV
-10 ⁵ -10 ⁴ -1	$0^{3}-10^{2}-10$ - 1 1 10 10^{2} 10^{3}	10 ⁴ 10 ⁵			

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP¹⁹

Summing up...

- ✓ The WWγ and WZγ cross section measurement in pp collisions at $\sqrt{s} = 8$ TeV is **not accessible with the data collected in 2012 by the CMS detector**.
- It was only possible to set a one-sided upper limit on the cross section.
 For the amount of data presented here, we set an upper limit of 0.24 pb at 95% C.L. for WVγ with photon pT > 10 GeV, which corresponds to 3.4 times the SM prediction.
- ✓ No evidence of anomalous WWγγ and WWZγ quartic gauge couplings was found.
- ✓ 95% confidence level upper limits were obtained for several anomalous couplings. These are the first ever limits on dim8 fT,0 and dim6 CP conserving couplings κ0W and κCW.

THANK YOU!

Constitution of March Marcon of Addition of Marcon

1000