Possible dark matter projects

Snowmass 2013 Cosmic Frontier Working Group 4: Dark Matter Complementarity*

*Conveners: Manoj Kaplinghat, Konstantin Matchev, Dan Hooper

1

DPF Meeting, UC Santa Cruz August 14, 2013

Looking for new particles

• Possible outcomes from new particle searches

Experiment	Nature says: The new particle X				
says:	is within reach of the experiment	is beyond reach of the experiment	does not exist		
"we see a signal"	GOOD	BAD			
"we don't see it, will proceed to set a limit"	NOT SO GOOD	GC	OD		

Two examples

- Higgs discovery at the LHC
 - signal is well defined, the rate is known in the SM
 - background is understood, measured very well
 - confirmation seen in several channels
 - confirmation seen in different experiments
- Direct and indirect WIMP searches
 - the signal strength is a priori unknown
 - backgrounds are not always well understood
 - cross-channel correlations very model-dependent
 - conflicting results from different experiments
- What will be the gold standard for a dark matter discovery?

Complementarity

Dark Matter

Eqmplementarity

Dark Matter

The different dark matter probes

• Direct detection see talk by Frank Calaprice

WIMPs

Axions

• Indirect detection site of the set of the

The different dark matter probes

Colliders see talks by Michael Peskin, Chris Hill, Paul Grannis

Monojets, Monophotons, ...

CF4 timeline

- Pre-SLAC workshop
 - Aspen workshop "Closing in on Dark matter" (Jan. 28 Feb. 3 2013)
 - prepare draft of the short (10 pages) Complementarity Document
- SLAC workshop (March 6-8 2013)
 - open discussion of the <u>Complementarity Document</u>
 - three CF4 sessions with (mostly) theory talks
 - joint sessions with CF1 (direct), CF2 (indirect) and CF3 (non-WIMP)

Pre-Snowmass

- publish the short Complementarity Document arXiv:1305.1605
- begin work on the long CF4 Summary Report
 - solicit white papers (six delivered)
- Snowmass (July 29 August 6 2013)
 - In preparation:
 - long (30 pages) CF4 report
 - short (4 pages) summary

Why do we need (to fund) so many experiments?

- No established theory of dark matter
 - many candidates: supersymmetry, extra dimensions, axions...
- Don't know the best method to detect it
 - need all four probes in order to cover all bases
- The experiments are challenging
 - need independent confirmation
- There may be several dark matter species
 - a single experiment will not suffice
- Post-discovery complementarity
 - the need to measure precise properties:
 - mass, spin, couplings

How to illustrate complementarity?

CPM Meeting, Fermilab 2012

• Qualitatively: the presence of a signal in:

The point being this:

The importance of complementarity

com·ple·men·ta·ry

adj.

1. Forming or serving as a complement; completing.

- 2. Supplying mutual needs or offsetting mutual lacks.
- Observation of several signals will be needed to confirm a DM discovery
- All four probes are needed to get the full picture
- The limitations of one probe might be overcome by the strengths of the other probes
- A negative result from a given search also brings important complementary information
 - we need to find out not only what DM couples to, but also what it does <u>not</u> couple to.

Different levels of complementarity

- Between different types of probes
 direct, indirect, colliders, astro
 arXiv:1305.1605
 long CF4 report
- Between different approaches within each probe
 - hadron colliders versus lepton colliders
 - indirect detection: neutrinos vs. gammas vs e⁺ subgroup reports

Summer

CF1, CF2, HE4

- direct detection: techniques, targets, scale...
- Between different designs within each approach
 e.g. D0 vs CDF, ATLAS vs CMS.
- Plots will be labelled simply as: "colliders", "indirect detection", "direct detection". The limit comes from the best experiment at that point.

What is dark matter?

see Dark Matter colloquium at Snowmass

Overwhelming observational evidence for it

6 times as prevalent as normal matter

- We are completely ignorant about its properties
 - mass, spin, lifetime, gauge quantum numbers
 - there could even be several DM species
- It could couple to any of the SM particles
 - including hidden sector particles
- There are many possibilities, including:
 - WIMPs (studied by CF1, CF2)
 - Asymmetric DM (CF1)
 - Axions (CF3)
 - Sterile neutrinos (CF3)
 - Hidden sector DM (CF4)

DM interactions vs. DM probes

• For our purposes, DM candidates are categorized according to their basic interactions

Appendices: lists of experiments

DIRECT DETECTION

INDIRECT DETECTION

COLLIDERS

TABLE I: Current and planned direct detection experiments.						
Status	Experiment	Target	Technique	Location Major Support		Comments
Current	LUX	350 kg liquid Xe	Ion., Scint.	SURF	DOE, NSF, European	
Planned	LZ	7 ton liquid Xe	Ion., Scint.	SURF	DOE, NSF, European	
Current	Xenon100	62 kg liquid Xe	Ion., Scint.	LNGS	DOE, NSF, European	
Planned	Xenon1T	3 ton liquid Xe	Ion., Scint.	LNGS	DOE, NSF, European	
Planned	PandaX-1	1.2 ton liquid Xe	Ion., Scint.	Jinping	Chinese	
Planned	PandaX-2	3 ton liquid Xe	Ion., Scint.	Jinping	Chinese	
Current	XMASS-I	800 kg liquid Xe	Scint.	Kamioka	Japanese	
Planned	XMASS-1.5	5 ton liquid Xe	Scint.	Kamioka	Japanese	
Current	DarkSide-50	50 kg liquid Ar	Ion., Scint.	LNGS	DOE, NSF, European	
Planned	DarkSide-G2	5 ton liquid Ar	Ion., Scint.	LNGS	DOE, NSF, European	
Current	ArDM	1 ton liquid Ar	Ion., Scint.	Canfranc	European	
Current	MiniCLEAN	500 kg liquid Ar/Ne	Scint.	SNOLab	DOE	
Current	DEAP-3600	3.6 ton liquid Ar	Scint.	SNOLab	Canadian	
Planned	CLEAN	40 ton liquid Ar/Ne	Scint.	SNOLab	DOE	
Current	COUPP-60	CF ₃ I	Bubbles	SNOLab	DOE, NSF	
Planned	COUPP-1T	CF ₃ I	Bubbles	SNOLab	DOE, NSF	
Current	PICASSO	1	Bubbles	SNOLab	Canadian	
Current	SIMPLE		Bubbles	Canfranc	European	
Current	SuperCDMS	10 kg Ge	Ion., Phonons	Soudan	DOE, NSF	
Planned	SuperCDMS	100 kg Ge	Ion., Phonons	Soudan	DOE, NSF	
Current	Edelweiss	4 kg Ge	Ion., Phonons	Modane	European	
Current	CRESST	10 kg CaWO_4	Scint., Phonons	LNGS	European	
Planned	EURECA	Ge, CaWO ₄				
Current	CoGeNT	Ge	Ion.	Soudan	DOE	
Current	TEXONO	Ge	Ion.		Chinese	
Current	DAMA/LIBRA	NaI			European	
Current	ELEGANT	NaI			Japanese	
Planned	DM-Ice	NaI				
Planned	CINDMS	NaI			Chinese	
Current	KIMS	CsI				
Current	DRIFT		Ion.			
Current	DMTPC	CF ₄ gas	Ion.	WIPP		
Planned	NEXT	Xe gas	Ion., Scint.	Canfranc		
Planned	MIMAC		Ion.	Modane		
Planned	Superfluid He-4					
Planned	DNA	DNA				
		TO	BE CONTINUI	ED		

Status	Experiment	Target	Location	Major Support	Comments
Current	AMS	e ⁺ /e [−] , anti-nuclei	ISS	NASA	Magnet Spectrome ter, Running
	Fermi	e^+/e^-	Satellite	NASA, DOE	Pair Telescope and Calorimeter, Run ning
	HESS	Photons, e ⁻	Namibia	German BMBF, Max Planck Society, French Ministry for Research, CNRS- IN2P3, UK PPARC, South Africa	Atmospheric Cherenkov Tele scope (ACT) Running
	IceCube/ DeepCore	Neutrinos	Antarctica	NSF, DOE, International *Belgium, Germany, Japan, Sweden)	Ice Cherenkov Running
	MAGIC	Photons, e^+/e^-	La Palma	German BMBF and MPG, INFN, WSwiss SNF, Spanish MICINN, CPAN, Bulgarian NSF, Academy of Finland, DFG, Polish MNiSzW	ACT, Running
	PAMELA	e^{+}/e^{-}	Satellite		
	VERITAS	Photons, e^+/e^-	Arizona, USA	DOE, NSF, SAO	ACT, Running
	ANTARES	Neutrinos	Mediter- ranean	France, Italy, Germany, Netherlands, Spain, Russia, and Morocco	Running
Planned	CALET	e^{+}/e^{-}	ISS	Japan JAXA, Italy ASI, NASA	Calorimeter
	CTA	Photons	ground- based (TBD)	International (MinGYT, CNEA, CON- ICET, CNRS-INSU, CNRS-IN2P3, Heimholtz Association, MIUR, NOVA, NWO, Poland, MICINN, CDTI, CPAN, Swedish Research Council, Royal Swedish Academy of Sciences, SNSF, Durham UK, NSF, DOE	ACT
	GAMMA-	Photons	Satellite	Russian Space Agency, Russian	Pair Telescope
	400			Academy of Sciences, INFN	
	GAPS	Antı- deuterons	(LDB)	NASA, JAXA	TOF, X-ray an Pion detection
\leq	HAWC	e^+/e^-	Sierra Ne- gra	NSF/DOE	Water Cherenkov Air Shower Surfac Array
	IceCube/ PINGU	Neutrinos	Antarctica	NSF, Germany, Sweden, Belgium	Ice Cherenkov
	KM3NeT	Neutrinos	Mediter- ranean	ESFRI, including France, Italy, Greece, Netherlands, Germany, Ireland, Roma- nia, Spain, UK, Cyprus	Water Cherenkov
	ORCA	Neutrinos	Mediter- ranean	ESFRI, including France, Italy, Greece, Netherlands, Germany, Ireland, Roma- nia, Spain, UK, Cyprus	Water Cherenkov
			TO	BE CONTINUED	

	TABLE III: Current and proposed particle colliders.				
Status	Collider	Type	E_{COM} , Luminosity	Major Support	Comments
Current	LHC	pp	$8 \text{ TeV}, 20 \text{ fb}^{-1}$	DOE, NSF	
Upcoming	LHC	pp	14 TeV, 300 ${\rm fb^{-1}}$	DOE, NSF	
Proposed	HL LHC	pp	14 TeV, 3000 ${\rm fb^{-1}}$		
Proposed	VLHC	pp	33-100 TeV		<u>_</u>
Proposed	Higgs Factory	e^+e^-	250 GeV		
Proposed	ILC, CLIC	e^+e^-	0.5-3 TeV		
Proposed	Muon Collider	$\mu^+\mu^-$	6 TeV		
		TO	BE CONTINUED		

How to illustrate complementarity?

- Quantitatively: compare rates for the three probes
 - Problem: different quantities are being reported

How can we uniquely correlate those results?

I. Effective theory approach

- Be completely agnostic about the underlying theory model, consider 4-point effective operators
 - this approach is being applied to Higgs couplings
- Parameterize our ignorance about their origin
 introduce one mass scale for each type of operator
- Effective Lagrangian considered in the complementarity document:

$$\frac{1}{M_q^2} \ \bar{\chi}\gamma^{\mu}\gamma_5\chi \sum_q \bar{q}\gamma_{\mu}\gamma_5q + \frac{\alpha_S}{M_g^3} \ \bar{\chi}\chi G^{a\mu\nu}G^a_{\mu\nu} + \frac{1}{M_\ell^2} \ \bar{\chi}\gamma^{\mu}\chi \sum_{\ell} \bar{\ell}\gamma_{\mu}\ell$$

$$D8 \qquad D11 \qquad D5 \qquad 17$$

Complementarity parameter space

19

Complementarity parameter space

DM coupling exclusively to quarks

 Flavor universal axial vector coupling (D8 operator)

DM coupling exclusively to leptons

 Flavor universal vector coupling (D5 operator)

$$\frac{1}{M_{\ell}^2} \ \bar{\chi} \gamma^{\mu} \chi \sum_{\ell} \bar{\ell} \gamma_{\mu} \ell$$

DM coupling exclusively to gluons

 4-point interaction (D11 operator)

II. Specific theory models

- Choose a complete new physics model with a dark matter candidate
 - Minimal supersymmetry
 - model-independent parametrization, aka pMSSM
 - MSUGRA (focus point scenario)
 - non-minimal SUGRA with light higgsino
 - Non-minimal supersymmetry
 - NMSSM
 - Extra dimensions
 - minimal UED
- Compute the three types of signals as a function of the model parameters. Impose constraints.

The pMSSM approach (SUSY without prejudice)

Cahill-Rowley, Cotta, Drlica-Wagner, Funk, Hewett, Ismail, Rizzo, M. Wood arXiv:1305.6921

- Sequentially apply projected constraints from
 - direct detection (red versus black)
 - indirect detection (red->green; black->blue)
 - LHC

talk by A. Ismail "Complementarity in the pMSSM"

Most surviving LSPs are eigenstates

Bino annihilation through Higgs funnel

Supergravity - mediated SUSY

Focus point SUSY

D. Sanford

1306.4961

Natural SUSY

Baer, Barger, Michelson, Tata 1306.4183

26

Non-minimal SUSY: NMSSM

McCaskey, Shaughnessy 1307.0851

Complementarity: mass degeneracy

- If the NLSP is degenerate with the DM
 - collider signals are degraded (soft jets, etc.)
 - direct detection signals are enhanced
 - SUSY (squarks)

Hisano, Ishiwata, Nagata 1110.3719

Arrenberg,Baudis,Kong,KM,Yoo 1307.6581

The Dark Matter Questionnaire

	Mass
	Spin
	Stable?
	🚺 Yes 🚺 No
	Couplings:
	Gravity
	Weak Interaction?
	Higgs?
	Quarks / Gluons?
	Leptons?
	Thermal Relic?
	Yes No
Credit: T. Tait	