

Measurements of VV Boson Production And Self-Interactions in The Semileptonic Channel at CMS

Osipenkov, Ilya (Texas A&M University) On behalf of the CMS Collaboration

DPF2013

The European Physical Journal C, February 2013, 73:2283 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP12015

Outline

Overview

* Challenges vs Advantages of the semileptonic channel

* Analysis Specifics

- > Object reconstruction
- Relevant Backgrounds
- Data vs Monte Carlo Comparison
- Template Fit
- > Systematics
- Cross-section Result

* Anomalous Triple Gauge Couplings

- Background theory
- Searches/Limit Setting
- Comparison to other channels and experiments

Conclusions

Overview

* pp \rightarrow W(\rightarrow lv)+V(\rightarrow jj) @ $\sqrt{s} = 7$ TeV

 $pp \rightarrow W(\rightarrow l\nu) + V(\rightarrow jj)$

Challenges

✤ Vast majority of events originate from the W+jets background

ww

е

ve

C

WW+WZ production is dominated by quark-antiquark collisions

 \succ $\sigma_{WW+WZ} \approx 70 \text{ pb} \text{ (mainly WW} \sim 70\%)$

* The Signal to Background ratio is much worse at the LHC and stronger cuts as well as improved analysis techniques are needed

DPF 2013: 08/15/2013

Advantages

Why study the diboson production in the WW+WZ semileptonic channel ?

Q. Why do you rob banks? A. Because, that's where the money is. - John Dillinger

* Higher Standard Model and Potential New Physics Signal Production Rates

- > Naturally extends to other diboson analyses with hadronic final states
 - Boosted topology and aTGC (Anomalous Triple Gauge Coupling) searches
 - Complimentary final states (e.g. $W(\rightarrow jj)+\gamma$, $V(\rightarrow jj)+Z(\rightarrow MET)$).
 - Vector Boson Fusion studies
- Current Goals:
 - Confirm the WV signal in the semileptonic events at CMS
 - Set limits on Anomalous Triple Gauge couplings
- > The work will serve as a benchmark for 8 and 13TeV measurements

Object Selection

> Select μ , *e* , MET and reconstruct the W

Variable	Muons	Electrons			
Single lepton trigger \boldsymbol{p}_{T} threshold	24 GeV	25-32 GeV			
offline p_{T} threshold	25 GeV	35 GeV			
Ini	< 2.1	< 2.5, excluding 1.44 < $ \eta $ < 1.57			
W transverse mass (M_{T_j})	> 30 GeV	> 50 GeV			
Missing transverse energy (MET)	> 25 GeV	> 30 GeV			
must be compatible with the primary vertex					
combined isolation $\boldsymbol{\Sigma}_{\DeltaR<0.3}$ ECAL+HCAL+tracker	< 10% muon p _T	< 5% electron p _T			
secondary loose lepton veto, muon (electron) $p_T > 10(20)$ GeV					

Reconstruct (exactly) two jets and apply PileUp corrections

Variable	Value	
Anti- \mathbf{k}_{T} clustering distance parameter \mathbf{R}	0.5	
Jet Isolation from leptons Δ R	> 0.3	
Jet p_{T} threshold	35 GeV	
Jet ŋ	< 2.6	
Jet b-tag veto based on secondary vertex		

Implement additional quality Cuts:

- Designed to enhance S/B
- Reduce the W+jets background by removing low p_T V candidates and jets with a high degree of separation
- Dijet p_T^{jj} >20GeV, $|\Delta \eta_{ij}|$ <1.5

Relevant Backgrounds

- ➤ W+Jets (σ=3.1x10⁴pb)
 - Dominant background
 - Significant effort made to reduce its contribution
- **>** Z+Jets (σ=3.0x10³pb)
 - Similar to W+Jets but smaller in amount
 - One of the leptons doesn't pass the selection requirements
- ttbar (σ=163pb)
 - Two real W's and two b-jets
 - Reduced by anti-btagging
 - Can identify the hadronic W and use as a control sample
- Single Top (σ=85pb)
 - One (leptonic) W and a b-jet
 - Reduced by anti-btagging
- > QCD/Multijet
 - Taken from the Data sideband with inverted isolation
 - The yield is estimated based on MET fit

DPF 2013: 08/15/2013

Data vs MC: Muon Channel

Overlay the relevant background simulation and scale the total yield to the data expectation

Reasonable agreement between data and MC

DPF 2013: 08/15/2013

Data vs MC: Electron Channel

Overlay the relevant background simulation and scale the total yield to the data expectation

Reasonable agreement between data and MC

DPF 2013: 08/15/2013

 $pp \rightarrow W(\rightarrow l\nu) + V(\rightarrow jj)$

Presented by: Osipenkov, Ilya

Fitting The M_{jj} Spectrum

- > Unbinned maximum likelihood for 40 < M_{jj} < 150 GeV
- > Shape templates taken from Monte Carlo (and multijet sideband)
- > Two separate fits for muon and electron event yields (combine when evaluating the cross-section)
 - The background contributions are free to float subject to Gaussian constraints.

Yield Constraints

Process	Shape	Constraint on normalization
Diboson (WW+WZ)	sim.	Unconstrained
W+jets	sim.	31314 pb \pm 5% (NLO) [24]
tī	sim.	163 pb ±7% (NLO) [25]
Single top	sim.	85 pb ±5% (NNLO) [26–28]
Drell-Yan+jets	sim.	3.05 nb ±4.3% (NNLO) [29]
Multijet	data	$E_{\rm T}^{\rm miss}$ fit in data (see text)

- ✤ W+jets shape is a combination of:
 - Default (MADGRAPH) MC
 - Either Matrix Element Parton Shower Matching Up (μ=2μ₀) or Matching Down (μ=0.5μ₀) MC
 - **Either Factorization Scale Up (q'=2q_0) or Scale Down (q'=0.5q_0) MC**

* The choice of Up or Down Sample is based on the best fit to the Data

***** The relative fractions (α, β) are free to vary in the fit (empirical model):

$$\mathcal{F}_{W+jets} = \alpha \cdot \mathcal{F}_{W+jets}(\mu_0^2, q'^2) + \beta \cdot \mathcal{F}_{W+jets}(\mu'^2, q_0^2) + (1 - \alpha - \beta) \cdot \mathcal{F}_{W+jets}(\mu_0^2, q_0^2)$$

* Diboson contribution is free to float during the fit

DPF 2013: 08/15/2013

Fit Output

Process	Muon channel	Electron channel
Diboson (WW+WZ)	1899 ± 373	783 ± 306
W+jets	67384 ± 586	31644 ± 850
tī	1662 ± 117	946 ± 67
Single top	650 ± 33	308 ± 17
Drell-Yan+jets	3609 ± 155	1408 ± 64
Multijet (QCD)	296 ± 317	4195 ± 867
Fit χ^2/dof (probability)	9.73/12 (0.64)	5.30/12 (0.95)
Total from fit	75420	39371
Data	75419	39365
Acceptance \times efficiency ($A\varepsilon$)	$5.153 imes 10^{-3}$	$2.633 imes 10^{-3}$
Expected WW+WZ yield from simulation	1697 ± 57	867 ± 29

➢ We extract 2682±482 WW+WZ events out of 1.15x10⁵.

Signal significance is 8.8σ using a simple likelihood ratio and 4.3σ using the profile likelihood ratio.

11

WW+WZ Cross-Section

***** Systematic Uncertainties:

We validate the fitter by performing pseudo-experiments (with correlations taken into account) and correct the yields & errors based on the resulting pull distributions. The procedure also covers the uncertainty due to limited MC.

W+jets shape error, as well as uncertainties due to the choice of ME-PS matching and Factorization/Renormalization scale are covered by the empirical model

- Uncertainties due to JES, JER, MET resolution, trigger efficiency, lepton reconstruction & selection efficiency, choice of parton PDF, jet veto and luminosity are subsequently included.
- Trigger Efficiency 1%
- Lepton Reconstruction and selection efficiency 2%
- Jet Energy scale 0.6%
- Missing Transverse Energy Resolution 0.5%
- Fit uncertainty 0.2%
- Luminosity Determination 2.2%
- Theory uncertainty on acceptance 4%

♦ σ (pp→WW+WZ) = 68.9 ± 8.7 (stat.) ± 9.7 (syst.) ± 1.5 (lum.) pb

***** We measure the diboson cross-section consistent with the Standard Model expectation of 65.6 ± 2.2 pb.

Anomalous Triple Gauge Couplings

***** Extend the Electro-Weak Lagrangian

$$\frac{\mathcal{L}_{eff}^{\nu WW}}{g_{\nu WW}} = ig_{1}^{V}(W_{\mu\nu}^{*}W^{\mu}V^{\nu} - W_{\mu}^{*}V_{\nu}W^{\mu\nu}) + i\kappa_{V}W_{\mu}^{*}W_{\nu}V^{\mu\nu} + i\frac{\lambda_{V}}{M_{W}^{2}}W_{\lambda,\mu}^{*}W_{\nu}^{\mu}V^{\nu\lambda} - g_{4}^{V}W_{\mu}^{*}W_{\nu}(\partial^{\mu}V^{\nu} + \partial^{\nu}V^{\mu}) + g_{5}^{V}\epsilon^{\mu\nu\lambda\rho}(W_{\mu}^{*}\partial_{\lambda}W_{\nu} - \partial_{\lambda}W_{\mu}^{*}W_{\nu})V_{\rho} + i\tilde{\kappa}_{V}W_{\mu}^{*}W_{\nu}\tilde{V}^{\mu\nu} + i\frac{\lambda_{V}}{M_{W}^{2}}W_{\lambda\mu}^{*}W_{\nu}^{\mu}\tilde{V}^{\nu\lambda} - V_{\mu}^{*}V_{\mu}^{*}W_{\mu}^{*}W_{\nu}^{*}V_{\mu}^{*}W_{\nu}^{*}V_{\mu}^{*}W_{\nu}^{*}V_{\nu}^{*}W_{\nu}^{*}V_{\nu}^{*}W_{\mu}^{*}V_{\nu}^{*}V_{\nu}^{*}W_{\nu}^{*}V_{\nu$$

 Lorentz invariant
 V=Z, γ

- > Require that C and P be conserved separately: $g_4^V = g_5^V = \tilde{\kappa}_V = \tilde{\lambda}_V = 0$
- **EM gauge invariance:** $g_1^{\gamma}=1$
- $\succ \text{ Redefine: } \mathbf{g}_1^{\mathbf{Z}} = 1 + \Delta \mathbf{g}_1^{\mathbf{Z}}, \kappa_{\mathbf{V}} = 1 + \Delta \kappa_{\mathbf{V}}$
- > aTGCs: $\Delta g_1^Z \neq 0$, $\Delta \kappa_V \neq 0$, $\lambda_V \neq 0$ for any of the five couplings represents a deviation from the SM
 - New particles present at tree level
 - Loop effects of heavy particles
 - Non-abelian structure of the gauge sector
- Assuming the presence of a Higgs doublet, SU(2)xU(1) gauge invariance and considering up to dimension 6 operators:
 - $\lambda_z = \lambda_\gamma = \lambda$
 - $\Delta \kappa_{z} = \Delta g_{1}^{Z} \Delta \kappa_{\gamma} * \tan^{2} \theta_{w}$

13

aTGC Searches

***** Examine the hadronic V \rightarrow jj p_T distributions

Place a 75 < m_{ii} < 95 GeV cut to enhance signal purity</p>

> Normalize the backgrounds based on fit results

> The last bin includes overflow events

DPF 2013: 08/15/2013

aTGC Limits

 $pp \rightarrow W(\rightarrow l\nu) + V(\rightarrow jj)$

aTGC dependence is modeled by reweighting SM Diboson MC to MCFM predictions 15

> Systematics due to luminosity, signal selection efficiency, signal shape, and from the normalization and shape of the SM processes are accounted for

> CLs (a modified frequentist construction) with profile likelihood as a test statistic is used to set limits

 $> \Delta g_1^{Z}$ is small and we take it to be 0

Presented by: Osipenkov, Ilya

aTGC Limits In Context

 $pp \rightarrow W(\rightarrow l\nu) + V(\rightarrow jj)$

Compare to other analyses and experiments

 Improve upon the limits from the fully leptonic channels due to a higher branching ratio 16

Competitive
 with the LEP
 Combination

Presented by: Osipenkov, Ilya

DPF 2013: 08/15/2013

Conclusions

Studying the WV semileptonic final states gives us access to higher signal yields at the expense of dealing with much higher background rates

WW+WZ cross-section measurement

- Defined a set of cuts and made Data vs Monte Carlo Comparisons
- Performed a template fit to the data
- Extracted the signal yield and accounted for systematics

Anomalous Triple Gauge Couplings

- Reduced the number of aTGC couplings by assuming C, P, EM and SU(2)xU(1) invariance
- Dijet p_T spectrum was used to compare the Standard Model to aTGC signal
- No evidence for deviations from the SM is found
- ➤ We set limits of -0.038 < λ_Z < 0.030, -0.111 < Δκ_γ < 0.142, an improvement upon the leptonic channels and competitive with LEP.</p>
- Future versions of the analysis to include boosted topology and extension to similar diboson final states with hadronic decays

Backup

