Charmless hadronic *B* decays from Belle

Youngjoon Kwon

Yonsei University, Seoul, Korea & Virginia Tech, Blacksburg, VA

> Aug. 15, 2013 DPF 2013

Y. Kwon (Yonsei Univ.)

Charmless hadronic B decays from Belle

1

Motivation for rare *B* decays

- SM is a very good approx. for reality i.e. A_{Nature} ≃ A_{SM} for most processes
- Need to look where A_{SM} is small, in order to be sensitive to NP
 - * Study rare decays
 - * Compare A_{Nature} with A_{SM} , \Rightarrow find new physics or learn new lessons!
- *b* → *c* decays take O(99%) of all *B* decays
 The others (*b* → *s*, *u*, *d*, or *b* → *NP*) are *charmless* and *rare*.

Motivation for hadronic rare *B* decays

- Belle has excellent hadron identifications for π^{\pm} , π^{0} , K^{\pm} , K^{0}_{S} , p (\bar{p}) and for ℓ^{\pm} and γ , as well
 - * Hadron ID facilities (Cherenkov, TOF, dE/dx for charged; EM Cal for π^0) are optimized for momentum ranges of the particles produced from *B* decays at Belle
 - * Typically, $\epsilon \sim 90\%$ and $f \lesssim 10\%$ for charged hadrons
 - * Also, very good performance for π^0

: Hadronic *B* decays (*incl.* π^0) can be reconstructed (*fully*) with high efficiency and purity \Rightarrow experimentally, very clean!

- Charmless hadronic *B* decays usually have interference between $b \rightarrow u$ tree and $b \rightarrow s(d)$ penguin diagram processes \Rightarrow sensitive to CPV *Remember CKM is not sufficient for the CPV in our universe!*
- Some puzzles in rare hadronic *B* decays
 - * " $K\pi$ puzzle" (Nature 452, 332 (2008); PRD 87, 031103(R) (2013))
 - * "V V puzzle" $f_L \sim 1$ (or not) in $B \rightarrow V V$ decays?

Outline

- 0. Motivations
- **1.** $B^0 \rightarrow \phi K^*$
 - * partial wave analysis for J = 0, 1, 2 states of K^*
 - * search for CPV
 - * arXiv:1308.1830, submitted to PRD
- **2.** $B^0 \rightarrow K^+ K^- \pi^0$
 - * first evidence of the decay
 - * study of substructures
 - * PRD 87, 091101(R) (2013)

In both analyses, the full Belle data sample on the $\Upsilon(4S)$ resonance are used: $\int \mathcal{L} dt \approx 711 \text{ fb}^{-1}, \ N_{B\overline{B}} = (772 \pm 11) \times 10^6.$ $B^0 \rightarrow \phi K^*$ – introduction

Decays dominantly via b → s penguin process in the SM
 ∴ negligible direct CPV in SM, i.e. a good place to look for CPV in NP

• $B \to V V \Rightarrow f_L \sim 1$ is expected by naive factorization hypothesis, *but* $B^0 \to \phi K^* (892)^0 \quad f_L = 0.45 \pm 0.05 \pm 0.02$ Belle, PRL 94, 221804 (2005) $f_L = 0.494 \pm 0.034 \pm 0.013$ BaBar, PRD 78, 092008 (2008)

 $B^0 o \phi \ K_2^*(1430)^0 \ f_L = 0.901^{+0.046}_{-0.058} \pm 0.037$ BaBar, PRD 78, 092008 (2008)

$B^0 \rightarrow \phi K^*$ – analysis action plan

- Partial wave analysis of $B^0 \to \phi \, K^*$ with $K^* \to K^+ \pi^-$ including
 - J = 0 (*S*-wave) (*K* π) "scalar" • J = 1 (*P*-wave) $K^*(892)^0$ "vector" • J = 2 (*D*-wave) $K^*_2(1430)^0$ "tensor"
- Analysis, restricted to $M(K\pi) < 1.55 \text{ GeV}/c^2$
 - LASS model for *S*-wave component (*incl. K*^{*}₀(1430))
 - Rel. spin-dep. Breit-Wigner for P- and D-wave components
- Describe angular dist. in the helicity base, with angles θ₁, θ₂, Φ
- Simultaneous fits to B^0 and \overline{B}^0 for CPV search

 \Rightarrow extract 26 real parameters from the fits to 9 observables

$B^0 \rightarrow \phi K^*$ – physics parameters to extract

- ∃ 28 real parameters (= 2 × 2 × 7 complext amplitudes A₀, A_{1λ}, A_{2λ}; λ = 0, ±1), but overal phase can be fixed
- $\Delta \phi_{00} = (1/2) \arg(A_{00}/\bar{A}_{00})$ is only accessible in $B \to \phi K_S^0 \pi^0$ CPV analysis; set $\Delta \phi_{00} = 0$ leaving only 26 parameters

Parameter	Definition	$\phi(K\pi)^*_0\ J=0$	$\begin{array}{l} \phi K^* (892)^0 \\ J=1 \end{array}$	$\phi K_2^* (1430)^0 \ J = 2$
\mathcal{B}_J	$\frac{1}{2}(\bar{\Gamma}_J + \Gamma_J)/\Gamma_{\text{total}}$	\mathcal{B}_0	\mathcal{B}_1	\mathcal{B}_2
f _{LJ}	$\frac{1}{2}(\bar{A}_{J0} ^2/\sum \bar{A}_{J\lambda} ^2+ A_{J0} ^2/\sum A_{J\lambda} ^2)$	-	f _{L1}	f _{L2}
$f_{\perp J}$	$\frac{1}{2}(\bar{A}_{J\perp} ^2/\sum \bar{A}_{J\lambda} ^2 + A_{J\perp} ^2/\sum A_{J\lambda} ^2)$	-	$f_{\perp 1}$	$f_{\perp 2}$
$\phi_{\parallel J}$	$\frac{1}{2}(\arg(\bar{A}_{J\parallel}/\bar{A}_{J0}) + \arg(A_{J\parallel}/A_{J0}))$	-	$\phi_{\parallel 1}$	$\phi_{\parallel 2}$
$\phi_{\perp J}$	$\frac{1}{2}(\bar{\operatorname{arg}}(\bar{A}_{J\perp}/\bar{A}_{J0}) + \operatorname{arg}(A_{J\perp}/A_{J0}) - \pi)$	-	$\phi_{\perp 1}$	$\phi_{\perp 2}$
δ_{0J}	$\frac{1}{2}(\arg(\bar{A}_{00}/\bar{A}_{J0}) + \arg(A_{00}/A_{J0}))$	-	δ_{01}	δ_{02}
\mathcal{A}_{CPJ}	$(\overline{\Gamma}_J - \Gamma_J)/(\overline{\Gamma}_J + \Gamma_J)$	\mathcal{A}_{CP0}	\mathcal{A}_{CP1}	\mathcal{A}_{CP2}
\mathcal{A}^{0}_{CPJ}	$\frac{ \tilde{A}_{J0} ^2 / \sum \tilde{A}_{J\lambda} ^2 - A_{J0} ^2 / \sum A_{J\lambda} ^2}{ \tilde{A}_{J0} ^2 / \sum \tilde{A}_{J\lambda} ^2 + A_{J0} ^2 / \sum A_{J\lambda} ^2}$	-	\mathcal{A}_{CP1}^{0}	\mathcal{A}_{CP2}^{0}
$\mathcal{A}_{CPJ}^{\perp}$	$\frac{ \bar{A}_{J\perp} ^2 / \sum \bar{A}_{J\lambda} ^2 - A_{J\perp} ^2 / \sum A_{J\lambda} ^2}{ \bar{A}_{J\perp} ^2 / \sum \bar{A}_{J\lambda} ^2 + A_{J\perp} ^2 / \sum A_{J\lambda} ^2}$	-	$\mathcal{A}_{CP1}^{\perp}$	$\mathcal{A}_{CP2}^{\perp}$
$\Delta \phi_{\parallel J}$	$\frac{1}{2}(\arg(\bar{A}_{J\parallel}/\bar{A}_{J0}) - \arg(A_{J\parallel}/A_{J0}))$	-	$\Delta \phi_{\parallel 1}$	$\Delta \phi_{\parallel 2}$
$\Delta \phi_{\perp J}$	$\frac{1}{2}(\arg(\bar{A}_{J\perp}/\bar{A}_{J0}) - \arg(A_{J\perp}/A_{J0}) - \pi)$	-	$\Delta \phi_{\perp 1}$	$\Delta \phi_{\perp 2}$
$\Delta \delta_{0J}$	$\frac{1}{2}(\arg(\bar{A}_{00}/\bar{A}_{J0}) - \arg(A_{00}/A_{J0}))$	-	$\Delta \delta_{01}$	$\Delta \delta_{02}$

$B^0 \rightarrow \phi K^*$ – experimental observables

- Reconstruct $B^0 \to \phi K^*$ with $\phi \to K^+K^-$ and $K^* \to K^+\pi^-$
- 9D fit to B^0 and \overline{B}^0
 - * $M_{\rm bc}$, ΔE the two most characteristic variables for *B* decays * M_{KK} , $M_{K\pi}$
 - * $C'_{\rm NB}$ neural network output for continuum suppression
 - * θ_1 , θ_2 , Φ the three helicity angles
 - * Q charge of K from K^*

$B^0 \rightarrow \phi K^*$ – experimental observables

- Reconstruct $B^0 \to \phi K^*$ with $\phi \to K^+K^-$ and $K^* \to K^+\pi^-$
- 9D fit to B^0 and \overline{B}^0
 - * $M_{\rm bc}$, ΔE the two most characteristic variables for *B* decays * M_{KK} , $M_{K\pi}$
 - * $C'_{\rm NB}$ neural network output for continuum suppression
 - * θ_1 , θ_2 , Φ the three helicity angles
 - * Q charge of K from K^*
- 3 components included in the fit
 - * Signal
 - * peaking background from $B^0 \rightarrow f_0(980)K^*(892)^0$
 - * combinatorial bkgd. (= continuum + other $B\overline{B}$)

 $B^0 \rightarrow \phi K^*$ – Results

FIG. 5: Projections onto the observables (a) $M_{K\pi}$, (b) $\cos\theta_1$, (c) $\cos\theta_2$, and (d) Φ for $B^0 \to \phi(K^+\pi^-)^*$ and $\bar{B}^0 \to \phi(K^-\pi^+)^*$ combined. The data distributions are shown by black markers with error bars whereas the overall fit function, combinatorial

 $B^0 \rightarrow \phi K^*$ – Results

	$\phi(K\pi)_0^*$	$\phi K^{*}(892)^{0}$	$\phi K_2^* (1430)^0$
Parameter	J = 0	J = 1	J = 2
FF_J	$0.273 \pm 0.024 \pm 0.021$	$0.600 \pm 0.020 \pm 0.015$	$0.099^{+0.016}_{-0.012} \pm 0.018$
f_{LJ}	•••	$0.499 \pm 0.030 \pm 0.018$	$0.918^{+0.029}_{-0.060} \pm 0.012$
$f_{\perp J}$	•••	$0.238 \pm 0.026 \pm 0.008$	$0.056^{+0.050}_{-0.035} \pm 0.009$
$\phi_{\parallel J}$ (rad)	•••	$2.23 \pm 0.10 \pm 0.02$	$3.76 \pm 2.88 \pm 1.32$
$\phi_{\perp J}$ (rad)		$2.37 \pm 0.10 \pm 0.04$	$4.45^{+0.43}_{-0.38} \pm 0.13$
δ_{0J} (rad)	•••	$2.91 \pm 0.10 \pm 0.08$	$3.53 \pm 0.11 \pm 0.19$
\mathcal{A}_{CPJ}	$0.093 \pm 0.094 \pm 0.017$	$-0.007\pm0.048\pm0.021$	$-0.155^{+0.152}_{-0.133} \pm 0.033$
\mathcal{A}^{0}_{CPJ}		$-0.030\pm0.061\pm0.007$	$-0.016^{+0.066}_{-0.051} \pm 0.008$
<u> </u>		$-0.14 \pm 0.11 \pm 0.01$	$-0.01^{+0.85}_{-0.67} \pm 0.09$
]	$-0.02\pm 0.10\pm 0.01$	$-0.02 \pm 1.08 \pm 1.01$
		$0.05 \pm 0.10 \pm 0.02$	$-0.19 \pm 0.42 \pm 0.11$
		$0.08 \pm 0.10 \pm 0.01$	$0.06 \pm 0.11 \pm 0.02$
	$303 \pm 29 \pm 25$	$668 \pm 34 \pm 24$	$110^{+18}_{-14} \pm 20$
J	28.7 ± 0.1	26.0 ± 0.1	16.3 ± 0.1
	9.4 ± 0.1	8.5 ± 0.1	2.6 ± 0.1
$B_J (10^{-0})$	$4.3\pm0.4\pm0.4$	$10.4\pm0.5\pm0.6$	$5.5^{+0.9}_{-0.7} \pm 1.0$

• BF and polarization parameters are consistent with existing results

• all CPV parameters are consistent with zero direct CPV

• Decays occur via $b \rightarrow u$ color-suppressed or W exchange diagrams \therefore strongly suppressed in SM

$$\mathcal{B}_{\mathrm{SM}}(B^0 \to K^{*\pm}K^{\mp}) \lesssim \mathcal{O}(10^{-7}), \ \mathcal{B}_{\mathrm{SM}}(B^0 \to \phi \pi^0) \sim \mathcal{O}(10^{-9})$$

- Existing limit: $\mathcal{B}(B^0 \to K^+ K^- \pi^0) < 1.9 \times 10^{-5}$ by CLEO (prl 89, 251801 (2002))
- No experimental information on resonance substructures are available e.g. K^{*}(892)[±]K[∓], K^{*}₀(1430)[±]K[∓], f₀(980)π⁰

Reminder – a related result

 $\mathcal{B}(B^0 o \phi \pi^0) < 1.5 imes 10^{-7} ~~\mathrm{at}~90\%~\mathrm{CL}$

A peak at $M_{KK} \sim 1.5 \text{ GeV}/c^2$? $A_{CP} \neq 0$ in the LHCb result?

$B^0 \rightarrow K^+ K^- \pi^0$ – Results

- Neural-net-based suppression of $e^+e^- \rightarrow q\bar{q}$ continuum $\Rightarrow C'_{\rm NB}$
- Select $\pm 3\sigma$ region of $M_{\rm bc}$: 5.271 < $M_{\rm bc}$ < 5.287 GeV/ c^2
- 2D fit on ΔE and $C'_{\rm NB}$ with the components:

First evidence!

$B^0 \rightarrow K^+ K^- \pi^0$ – Resonance substructure?

- Signal yields fitted in $M_{K^+K^-}$ and $M_{K^+\pi^0}$ bins
- Nothing definitely stated about $M_{KK} \sim 1.5 \text{GeV}/c^2$ structure observed by BaBar and LHCb
- Excess of events in $M_{K^+\pi^0} \sim 1.4 \text{GeV}/c^2$ Amplitude analysis with much more statistics is required \Rightarrow Belle II

Closing words

- Partial wave analysis of $B^0 \to \phi \, K^*$ and search for CPV
 - * BF and polarizations consistent with existing results

$$\begin{split} \mathcal{B}(B^0 &\to \phi \; (K\pi)^*_0) = (4.3 \pm 0.4 \pm 0.3) \times 10^{-6} \\ \mathcal{B}(B^0 &\to \phi \; K^*(892)^0) = (10.4 \pm 0.5 \pm 0.5) \times 10^{-6} \\ \mathcal{B}(B^0 &\to \phi \; K^*_2(1430)^0) = (5.5^{+0.9}_{-0.7} \pm 0.7) \times 10^{-6} \\ f_L &= 0.499 \pm 0.030 \pm 0.018 \quad (\phi \; K^*) \\ f_L &= 0.918^{+0.029}_{-0.060} \pm 0.012 \qquad (\phi \; K^*_2(1430)^0) \end{split}$$

- * No evidence for *CP* violation
- $B^0 \rightarrow K^+ K^- \pi^0$
 - * First evidence with 3.5σ significance $\mathcal{B}(B^0 \to K^+ K^- \pi^0) = (2.17 \pm 0.60 \pm 0.24) \times 10^{-6}$
 - * No definite statement on the substructures ⇒ Belle II
 → Sven Vahsen's talk tomorrow @ QLF-I