Charmless hadronic B decays from Belle

Youngjoon Kwon

Yonsei University, Seoul, Korea
\& Virginia Tech, Blacksburg, VA

Aug. 15, 2013
DPF 2013

>1 ab $^{-1}$ On resonance: $Y(5 S): 121 \mathrm{fb}^{-1}$ Y(4S): $711 \mathrm{fb}^{-1}$ $Y(3 \mathrm{~S}): 3 \mathrm{fb}^{-1}$ $Y(2 S): 25 \mathrm{fb}^{-1}$ $Y(1 \mathrm{~S}): 6 \mathrm{fb}^{-1}$ Off reson./scan:
$\sim 100 \mathrm{fb}^{-1}$
$\sim 550 \mathrm{fb}^{-1}$
On resonance:
$Y(4 \mathrm{~S}): 433 \mathrm{fb}^{-1}$
$Y(3 S): 30 \mathrm{fb}^{-1}$
$Y(2 S): 14 \mathrm{fb}^{-1}$ Off resonance:
$\sim 54 \mathrm{fb}^{-1}$

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

Motivation for rare B decays

- SM is a very good approx. for reality i.e. $A_{\text {Nature }} \simeq A_{\text {SM }}$ for most processes
- Need to look where $A_{S M}$ is small, in order to be sensitive to NP
* Study rare decays
* Compare $A_{\text {Nature }}$ with $A_{S M}$, \Rightarrow find new physics or learn new lessons!
- $b \rightarrow c$ decays take $\mathcal{O}(99 \%)$ of all B decays

The others $(b \rightarrow s, u, d$, or $b \rightarrow N P)$ are charmless and rare.

Motivation for hadronic rare B decays

- Belle has excellent hadron identifications for $\pi^{ \pm}, \pi^{0}, K^{ \pm}, K_{S}^{0}, p(\bar{p})$ and for $\ell^{ \pm}$and γ, as well
* Hadron ID facilities (Cherenkov, TOF, $d E / d x$ for charged; EM Cal for π^{0}) are optimized for momentum ranges of the particles produced from B decays at Belle
* Typically, $\epsilon \sim 90 \%$ and $f \lesssim 10 \%$ for charged hadrons
* Also, very good performance for π^{0}
\therefore Hadronic B decays (incl. π^{0}) can be reconstructed (fully) with high efficiency and purity \Rightarrow experimentally, very clean!
- Charmless hadronic B decays usually have interference between $b \rightarrow u$ tree and $b \rightarrow s(d)$ penguin diagram processes
\Rightarrow sensitive to CPV Remember CKM is not sufficient for the CPV in our universe!
- Some puzzles in rare hadronic B decays

$$
\begin{aligned}
& \text { * "K } \pi \text { puzzle" (Nature 452, } 332 \text { (2008); PRD 87, 031103(R) (2013)) } \\
& \text { * " } V V \text { puzzle" } f_{L} \sim 1 \text { (or not) in } B \rightarrow V V \text { decays? }
\end{aligned}
$$

Outline

0. Motivations
1. $B^{0} \rightarrow \phi K^{*}$

* partial wave analysis for $J=0,1,2$ states of K^{*}
* search for CPV
* arXiv:1308.1830, submitted to PRD

2. $B^{0} \rightarrow K^{+} K^{-} \pi^{0}$

* first evidence of the decay
* study of substructures
* PRD 87, 091101(R) (2013)

In both analyses, the full Belle data sample on the $\Upsilon(4 S)$ resonance are used:
$\int \mathcal{L} d t \approx 711 \mathrm{fb}^{-1}, N_{B \bar{B}}=(772 \pm 11) \times 10^{6}$.

$B^{0} \rightarrow \phi K^{*}$ - introduction

- Decays dominantly via $b \rightarrow s$ penguin process in the SM \therefore negligible direct CPV in SM, i.e. a good place to look for CPV in NP
- $B \rightarrow V V \Rightarrow f_{L} \sim 1$ is expected by naive factorization hypothesis, but

$$
\begin{array}{ll}
B^{0} \rightarrow \phi K^{*}(892)^{0} & f_{L}=0.45 \pm 0.05 \pm 0.02 \quad \text { Belle, PRL 94, 221804 (2005) } \\
& f_{L}=0.494 \pm 0.034 \pm 0.013 \quad \text { BaBar, PRD 78, 092008 (2008) } \\
B^{0} \rightarrow \phi K_{2}^{*}(1430)^{0} & f_{L}=0.901_{-0.058}^{+0.046} \pm 0.037 \quad \text { BaBar, PRD 78, } 092008(2008)
\end{array}
$$

$B^{0} \rightarrow \phi K^{*}$ - analysis action plan

- Partial wave analysis of $B^{0} \rightarrow \phi K^{*}$ with $K^{*} \rightarrow K^{+} \pi^{-}$including
- $J=0$ (S-wave) $(K \pi) \quad$ "scalar"
- $J=1$ (P-wave) $K^{*}(892)^{0} \quad$ "vector"
- $J=2$ (D-wave) $K_{2}^{*}(1430)^{0}$ "tensor"
- Analysis, restricted to $M(K \pi)<1.55 \mathrm{GeV} / c^{2}$
- LASS model for S-wave component (incl. $K_{0}^{*}(1430)$)
- Rel. spin-dep. Breit-Wigner for P - and D-wave components
- Describe angular dist. in the helicity base, with angles $\theta_{1}, \theta_{2}, \Phi$
- Simultaneous fits to B^{0} and \bar{B}^{0} for CPV search
\Rightarrow extract 26 real parameters from the fits to 9 observables

$B^{0} \rightarrow \phi K^{*}$ - physics parameters to extract

- $\exists 28$ real parameters ($=2 \times 2 \times 7$ complext amplitudes $A_{0}, A_{1 \lambda}, A_{2 \lambda}$; $\lambda=0, \pm 1)$, but overal phase can be fixed
- $\Delta \phi_{00}=(1 / 2) \arg \left(A_{00} / \bar{A}_{00}\right)$ is only accessible in $B \rightarrow \phi K_{S}^{0} \pi^{0} \mathrm{CPV}$ analysis; set $\Delta \phi_{00}=0$ leaving only 26 parameters

Parameter	Definition	$\begin{gathered} \phi(K \pi)_{0}^{*} \\ J=0 \end{gathered}$	$\begin{gathered} \phi K^{*}(892)^{0} \\ J=1 \end{gathered}$	$\begin{gathered} \phi K_{2}^{*}(1430)^{0} \\ J=2 \end{gathered}$					
\mathcal{B}_{J}	$\frac{1}{2}\left(\bar{\Gamma}_{J}+\Gamma_{J}\right) / \Gamma_{\text {total }}$	\mathcal{B}_{0}	\mathcal{B}_{1}	\mathcal{B}_{2}					
$f_{L J}$	$\frac{1}{2}\left(\left\|\bar{A}_{J 0}\right\|^{2} / \sum\left\|\bar{A}_{J \lambda}\right\|^{2}+\left\|A_{j 0}\right\|^{2} / \sum\left\|A_{J \lambda}\right\|^{2}\right)$	-	$f_{L 1}$	$\mathrm{f}_{\text {L2 }}$					
$f_{\perp J}$	$\frac{1}{2}\left(\left\|\bar{A}_{J \perp}\right\|^{2} / \sum\left\|\bar{A}_{J \lambda}\right\|^{2}+\left\|A_{J \perp}\right\|^{2} / \sum\left\|A_{J \lambda}\right\|^{2}\right)$	-	$f_{\perp 1}$	$f_{\perp 2}$					
$\phi_{\\| J}$	$\frac{1}{2}\left(\arg \left(\bar{A}_{J \\|} / \bar{A}_{J 0}\right)+\arg \left(A_{J \\|} / A_{J 0}\right)\right)$	-	$\phi_{\\| 1}$	$\phi_{\\| 2}$					
$\phi_{\perp J}$	$\frac{1}{2}\left(\arg \left(\bar{A}_{J \perp} / \bar{A}_{J 0}\right)+\arg \left(A_{J \perp} / A_{j 0}\right)-\pi\right)$	-	$\phi_{\perp 1}$	$\phi_{\perp 2}$					
$\delta_{0 J}$	$\frac{1}{2}\left(\arg \left(\bar{A}_{00} / \bar{A}_{J 0}\right)+\arg \left(A_{00} / A_{j 0}\right)\right)$	-	δ_{01}	δ_{02}					
$\mathcal{A}_{\text {cPJ }}$	$\left(\bar{\Gamma}_{J}-\Gamma_{J}\right) /\left(\bar{\Gamma}_{J}+\Gamma_{J}\right)$	$\mathcal{A}_{\text {CP0 }}$	$\mathcal{A}_{\text {CP1 }}$	$\mathcal{A}_{\text {cP2 }}$					
$\mathcal{A}_{\text {CPJ }}^{0}$	$\frac{\left\|\bar{A}_{j 0}\right\|^{2} / \sum\left\|\bar{A}_{j \lambda}\right\|^{2}-\left\|A_{j 0}\right\|^{2} / \sum\left\|A_{j \lambda}\right\|^{2}}{\left\|\bar{A}_{j 0}\right\|^{2} / \sum\left\|\bar{A}_{j \lambda}\right\|^{2}+\left\|A_{j 0}\right\|^{2} / \sum\left\|A_{j \lambda}\right\|^{2}}$	-	$\mathcal{A}_{C P 1}^{0}$	$\mathcal{A}_{\text {CP2 }}^{0}$					
$\mathcal{A}^{\stackrel{1}{C P J}}$	$\frac{\left\|\bar{A}_{J \perp}\right\|^{2} / \sum\left\|\bar{A}_{J \lambda}\right\|^{2}-\left\|A_{J \perp}\right\|^{2} / \sum\left\|A_{J \lambda}\right\|^{2}}{\left\|\bar{A}_{J \perp \perp}\right\|^{2} / \sum\left\|\bar{A}_{J \lambda}\right\|^{2}+\left\|A_{J \perp}\right\|^{2} / \sum\left\|A_{J \lambda}\right\|^{2}}$	-	$\mathcal{A}^{\stackrel{1}{C P 1}}$	$\mathcal{A}^{\stackrel{1}{C P 2}}$					
$\Delta \phi_{\\| J}$	$\frac{1}{2}\left(\arg \left(\bar{A}_{J \\|} / \bar{A}_{J 0}\right)-\arg \left(A_{J \\|} / A_{j 0}\right)\right)$	-	$\Delta \phi_{\\| 1}$	$\Delta \phi_{\\| 2}$					
$\Delta \phi_{\perp J}$	$\frac{1}{2}\left(\arg \left(\bar{A}_{J \perp} / \bar{A}_{J 0}\right)-\arg \left(A_{J \perp} / A_{J 0}\right)-\pi\right)$	-	$\Delta \phi_{\perp 1}$	$\Delta \phi_{\perp 2}$					
$\Delta \delta_{0 J}$	$\frac{1}{2}\left(\arg \left(\bar{A}_{00} / \bar{A}_{j 0}\right)-\arg \left(A_{00} / A_{j 0}\right)\right)$	-	$\Delta \delta_{01}$	$\Delta \delta_{02}$					

$B^{0} \rightarrow \phi K^{*}$ - experimental observables

- Reconstruct $B^{0} \rightarrow \phi K^{*}$ with $\phi \rightarrow K^{+} K^{-}$and $K^{*} \rightarrow K^{+} \pi^{-}$
- 9D fit to B^{0} and \bar{B}^{0}
* $M_{\mathrm{bc}}, \Delta E$ - the two most characteristic variables for B decays
* $M_{K K}, M_{K \pi}$
* C_{NB}^{\prime} - neural network output for continuum suppression
* $\theta_{1}, \theta_{2}, \Phi-$ the three helicity angles
* Q - charge of K from K^{*}
(Signal

$B^{0} \rightarrow \phi K^{*}$ - experimental observables

- Reconstruct $B^{0} \rightarrow \phi K^{*}$ with $\phi \rightarrow K^{+} K^{-}$and $K^{*} \rightarrow K^{+} \pi^{-}$
- 9D fit to B^{0} and \bar{B}^{0}
* $M_{\mathrm{bc}}, \Delta E$ - the two most characteristic variables for B decays
* $M_{K K}, M_{K \pi}$
* C_{NB}^{\prime} - neural network output for continuum suppression
* $\theta_{1}, \theta_{2}, \Phi$ - the three helicity angles
* Q - charge of K from K^{*}
- 3 components included in the fit
* Signal
* peaking background from $B^{0} \rightarrow f_{0}(980) K^{*}(892)^{0}$
* combinatorial bkgd. (= continuum + other $B \bar{B}$)

$B^{0} \rightarrow \phi K^{*}$ - Results

FIG. 4: Projections onto the observable (a) M_{bc}, (b) ΔE, (c) $M_{K K}$, and (d) C_{NB}^{\prime} for $B^{0} \rightarrow \phi\left(K^{+} \pi^{-}\right)^{*}$ anc combined. The data distributions are shown by black markers with error bars whereas the overall fit funct

Total PDF
Continuum

FIG. 5: Projections onto the observables (a) $M_{K \pi}$, (b) $\cos \theta_{1}$, (c) $\cos \theta_{2}$, and (d) Φ for $B^{0} \rightarrow \phi\left(K^{+} \pi^{-}\right)^{*}$ and $\bar{B}^{0} \rightarrow \phi\left(K^{-} \pi^{+}\right)^{*}$ combined. The data distributions are shown by black markers with error bars whereas the overall fit function, combinatorial

	$\phi(K \pi)_{0}^{*}$	$\phi K^{*}(892)^{0}$	$\phi K_{2}^{*}(1430)^{0}$	
Parameter	$J=0$	$J=1$	$J=2$	
$F F_{J}$	$0.273 \pm 0.024 \pm 0.021$	$0.600 \pm 0.020 \pm 0.015$	$0.099_{-0.012}^{+0.016} \pm 0.018$	
$f_{L J}$	\ldots	$0.499 \pm 0.030 \pm 0.018$	$0.918_{-0.029}^{+0.020} \pm 0.012$	
$f_{\perp J}$	\ldots	$0.238 \pm 0.026 \pm 0.008$	$0.056_{-0.035}^{+0.050} \pm 0.009$	
$\phi_{\\| J}(\mathrm{rad})$	\ldots	$2.23 \pm 0.10 \pm 0.02$	$3.76 \pm 2.88 \pm 1.32$	
$\phi_{\perp J}(\mathrm{rad})$	\ldots	$2.37 \pm 0.10 \pm 0.04$	$4.45_{-0.38}^{+0.43} \pm 0.13$	
$\delta_{0 J}(\mathrm{rad})$	\ldots	$2.91 \pm 0.10 \pm 0.08$	$3.53 \pm 0.11 \pm 0.19$	
$\mathcal{A}_{C P J}$	$0.093 \pm 0.094 \pm 0.017$	$-0.007 \pm 0.048 \pm 0.021$	$-0.155_{-0.133}^{+0.152} \pm 0.033$	
$\mathcal{A}_{C P J}^{0}$	\ldots	$-0.030 \pm 0.061 \pm 0.007$	$-0.016_{-0.066}^{+0.065} \pm 0.008$	
$\mathcal{A}_{C P J}^{\perp}$	\ldots	$-0.14 \pm 0.11 \pm 0.01$	$-0.01_{-0.67}^{+0.85} \pm 0.09$	
$\Delta \phi_{\\| J}(\mathrm{rad})$	\ldots	$-0.02 \pm 0.10 \pm 0.01$	$-0.02 \pm 1.08 \pm 1.01$	
$\Delta \phi_{\perp J}(\mathrm{rad})$	\ldots	$0.05 \pm 0.10 \pm 0.02$	$-0.19 \pm 0.42 \pm 0.11$	
$\Delta \delta_{0 J}(\mathrm{rad})$	\ldots	$0.08 \pm 0.10 \pm 0.01$	$0.06 \pm 0.11 \pm 0.02$	
$N_{J}(\mathrm{events})$	$303 \pm 29 \pm 25$	$668 \pm 34 \pm 24$	$110_{-14}^{+18} \pm 20$	
$\epsilon_{\mathrm{reco}, J}(\%)$	28.7 ± 0.1	26.0 ± 0.1	16.3 ± 0.1	
$\epsilon_{J}(\%)$	9.4 ± 0.1	8.5 ± 0.1	2.6 ± 0.1	
$\mathcal{B}_{J}\left(10^{-6}\right)$	$4.3 \pm 0.4 \pm 0.4$	$10.4 \pm 0.5 \pm 0.6$	$5.5_{-0.7}^{+0.9} \pm 1.0$	

- BF and polarization parameters are consistent with existing results
- all CPV parameters are consistent with zero direct CPV

$B^{0} \rightarrow K^{+} K^{-} \pi^{0}$ - introduction

- Decays occur via $b \rightarrow u$ color-suppressed or W exchange diagrams
\therefore strongly suppressed in SM

$$
\mathcal{B}_{\mathrm{SM}}\left(B^{0} \rightarrow K^{* \pm} K^{\mp}\right) \lesssim \mathcal{O}\left(10^{-7}\right), \quad \mathcal{B}_{\mathrm{SM}}\left(B^{0} \rightarrow \phi \pi^{0}\right) \sim \mathcal{O}\left(10^{-9}\right)
$$

- Existing limit: $\mathcal{B}\left(B^{0} \rightarrow K^{+} K^{-} \pi^{0}\right)<1.9 \times 10^{-5}$ by CLEO (PRL 89, 251801 (2002))
- No experimental information on resonance substructures are available e.g. $K^{*}(892)^{ \pm} K^{\mp}, K_{0}^{*}(1430)^{ \pm} K^{\mp}, f_{0}(980) \pi^{0}$

Reminder - a related result

some puzzles in $M_{K^{+} K^{-}}$

$$
B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}
$$

A peak at $M_{K K} \sim 1.5 \mathrm{GeV} / \mathrm{c}^{2} ? \quad A_{C P} \neq 0$ in the LHCb result?

$B^{0} \rightarrow K^{+} K^{-} \pi^{0}-$ Results

- Neural-net-based suppression of $e^{+} e^{-} \rightarrow q \bar{q}$ continuum $\Rightarrow C_{\mathrm{NB}}^{\prime}$
- Select $\pm 3 \sigma$ region of $M_{\mathrm{bc}}: 5.271<M_{\mathrm{bc}}<5.287 \mathrm{GeV} / \mathrm{c}^{2}$
- 2 D fit on ΔE and C_{NB}^{\prime} with the components:

$$
N_{\text {sig }}=299 \pm 83, \quad \mathcal{B}\left(B^{0} \rightarrow K^{+} K^{-} \pi^{0}\right)=(2.17 \pm 0.60 \pm 0.24) \times 10^{-6}
$$ First evidence!

$B^{0} \rightarrow K^{+} K^{-} \pi^{0}$ - Resonance substructure?

- Signal yields fitted in $M_{K^{+} K^{-}}$and $M_{K^{+} \pi^{0}}$ bins
- Nothing definitely stated about $M_{K K} \sim 1.5 \mathrm{GeV} / c^{2}$ structure observed by BaBar and LHCb
- Excess of events in $M_{K^{+}} \pi^{0} \sim 1.4 \mathrm{GeV} / \mathrm{c}^{2}$

Amplitude analysis with much more statistics is required \Rightarrow Belle II

Closing words

- Partial wave analysis of $B^{0} \rightarrow \phi K^{*}$ and search for CPV
* BF and polarizations consistent with existing results

$$
\begin{aligned}
& \mathcal{B}\left(B^{0} \rightarrow \phi(K \pi)_{0}^{*}\right)=(4.3 \pm 0.4 \pm 0.3) \times 10^{-6} \\
& \mathcal{B}\left(B^{0} \rightarrow \phi K^{*}(892)^{0}\right)=(10.4 \pm 0.5 \pm 0.5) \times 10^{-6} \\
& \mathcal{B}\left(B^{0} \rightarrow \phi K_{2}^{*}(1430)^{0}\right)=\left(5.5_{-0.7}^{+0.9} \pm 0.7\right) \times 10^{-6} \\
& f_{L}=0.499 \pm 0.030 \pm 0.018 \quad\left(\phi K^{*}\right) \\
& f_{L}=0.918_{-0.060}^{+0.029} \pm 0.012 \quad\left(\phi K_{2}^{*}(1430)^{0}\right)
\end{aligned}
$$

* No evidence for $C P$ violation
- $B^{0} \rightarrow K^{+} K^{-} \pi^{0}$
* First evidence with 3.5σ significance

$$
\mathcal{B}\left(B^{0} \rightarrow K^{+} K^{-} \pi^{0}\right)=(2.17 \pm 0.60 \pm 0.24) \times 10^{-6}
$$

* No definite statement on the substructures \Rightarrow Belle II \rightarrow Sven Vahsen's talk tomorrow @ QLF-I

