Observation and coupling measurements of the Higgs boson in the diphoton decay channel in ATLAS

Hongtao Yang University of Wisconsin-Madison

DPF Meeting, Santa Cruz, CA Aug 15, 2013

Outline

- Present the post discovery results on observation and coupling measurements in $H \rightarrow \gamma \gamma$.
- The results are based on the 4.8 fb⁻¹ 7 TeV data and 20.7 fb⁻¹ 8 TeV data taken during 2011-2012.

Phys. Lett. B 716 (2012) 1-29

Production and Decay and

arXiv:1101.0593, arXiv:1201.3084

	Luminosity	Higgs produced	Decayed to diphoton	Selected
7 TeV	4.8 fb ⁻¹	~83,000	~190	~80
8 TeV	20.7 fb ⁻¹	~458,000	~1000	~420

SM expectation assuming m_H = 125.5 GeV

Background

Both photons are not fake

4

Select $H \rightarrow \gamma \gamma$ candidates

- Very simple diphoton candidates selection:
 - $-p_T(\gamma_1,\gamma_2) > 40, 30 \text{ GeV}$
 - $|\eta| < 1.37$ or $1.56 < |\eta| < 2.37$
 - Isolated photon, passing photon identification criteria

Invariant mass spectrum

Categorization

- Enhance the sensitivity: classifying events to categories with different S/B and resolution.
 - Using photon η , photon conversion status and p_{Tt} to define categories.
 - Important for the search

Categorization

- Enhance the sensitivity: classifying events to categories with different S/B and resolution.
 - Using photon η , photon conversion status and p_{Tt} to define categories.
 - Important for the search
- Enhance the sensitivity to particular Higgs boson production modes: isolate events with distinct topologies.
 - Important for the coupling measurements

Signal decomposition

Category	N_D	N_B	N_S	ggF	VBF	WH	ZH	ttH
Untagged	14248	13582	350	320	19	7.0	4.2	1.0
Loose high-mass two-jet	41	28	5.0	2.3	2.7	< 0.1	< 0.1	< 0.1
Tight high-mass two-jet	23	13	7.7	1.8	5.9	< 0.1	< 0.1	< 0.1
Low-mass two-jet	19	21	3.1	1.5	< 0.1	0.92	0.54	< 0.1
$E_{\rm T}^{\rm miss}$ significance	8	4	1.2	< 0.1	< 0.1	0.43	0.57	0.14
Lepton	20	12	2.7	< 0.1	< 0.1	1.7	0.41	0.50
All categories (inclusive)	13931	13205	370	330	27	10	5.8	1.7

Signal significance

m _H	[GeV]
----------------	-------

	m _H (GeV)	Expected Z (σ)	Observed Z (σ)
7 TeV	126.0	1.6	3.3
8 TeV	126.5	4.0	6.5
Combined	126.5	4.3	7.4

Signal strength

- Signal strength (μ) : number of observed signal events over number of expected signal events.
 - For the inclusive production: μ
 - For each Higgs production mode: $\mu_i \times BR/BR_{SM}$ ($i = ggH + t\bar{t}H, VBF, VH...$)
- Categorization made coupling measurements possible

N_i: observed signal events in category *i*.

 $S_{i,j}$: SM signal yield in category *i* for the Higgs boson production mode *j*.

$$N \approx \mu \times S \qquad \begin{pmatrix} N_1 \\ \vdots \\ N_i \end{pmatrix} \approx \begin{pmatrix} S_{1,1} & \cdots & S_{1,j} \\ \vdots & \ddots & \vdots \\ S_{i,1} & \cdots & S_{i,j} \end{pmatrix} \times \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_j \end{pmatrix}$$

Inclusive model independent Categorized model dependent

Mass measurement

m_H [GeV]

- m_H is extracted from a fit with both signal position and normalization free.
- $m_H = 126.8 \pm 0.2 (stat) \pm 0.7 (syst)$ GeV
- Dominant uncertainty: mass scale systematics.

Inclusive signal strength measurement

- μ = 1.57 ± 0.22 (*stat*)^{+0.17}_{-0.13}(*syst*)^{+0.17}_{-0.12}(*theory*) with m_H = 126.8 GeV
 - Theory uncertainty (*theory*): QCD scale, PDF and branching ratio uncertainties.
 - Systematic uncertainty (*syst*): all the other uncertainties.
- The possibility that a SM signal fluctuate to the observation is 3%, corresponding to 1.9σ deviation from the SM S+B hypothesis (@125.5 GeV).

Coupling with fermions vs. coupling with bosons

- $ggH + t\bar{t}H$: coupling with fermion (top quark)
- VBF + VH : coupling with vector boson
- Consistent with SM within 2σ (Results from 4l and WW channels are consistent with SM within 1σ).
- Evaluated @125.5GeV: difference compared with results @126.8GeV is small due to large uncertainty on m_H (700 MeV) in this channel.

Coupling measurements results

 $\mu_{ggH+t\bar{t}H} \times BR/BR_{SM} = 1.54^{+0.31}_{-0.31}(stat)^{+0.28}_{-0.18}(syst)$ $\mu_{VBF} \times BR/BR_{SM} = 1.63^{+0.78}_{-0.71}(stat)^{+0.53}_{-0.42}(syst)$ $\mu_{VH} \times BR/BR_{SM} = 1.71^{+1.40}_{-1.25}(stat)^{+0.30}_{-0.27}(syst)$

Search for $t\bar{t}H$ (New)

- Crucial for understanding the Yukawa coupling between the top quark and the Higgs boson
- Two channels
 - Leptonic: $t\bar{t} \rightarrow W^+ bW^- \bar{b} \rightarrow l\nu b + l\nu b/jjb$
 - Hadronic: $t\overline{t} \rightarrow W^+ bW^- \overline{b} \rightarrow 4j + b\overline{b}$

ATLAS-CONF-2013-080

Channel	N_S	ggH(%)	VBF(%)	WH(%)	ZH(%)	<i>tH</i> (%)	$t\bar{t}H(\%)$	N_B	N_S/N_B
Leptonic	0.55	0.6	0.3	7.7	2.4	6.1	82.8	$1.2^{+0.6}_{-0.5}$	0.45
Hadronic	0.36	5.3	1.1	1.1	1.3	0.0	91.2	$1.9_{-0.5}^{+0.7}$	0.19

Signal decomposition in the two $t\bar{t}H$ channels

Limit on $t\bar{t}H$, $H \rightarrow \gamma\gamma$ (New)

- The exclusion limits @ 95% C.L. on $t\bar{t}H, H \rightarrow \gamma\gamma$ production $@m_{H} = 126.8 \text{ GeV}$ are
 - Observed 5.3×SM
 - Expected 6.4 \times SM

<u>ATLAS-CONF-2013-080</u>

95% CL limit on م^{tīH}/م_{SM}

35

30

25

20

15

10

5

120

Observed *CL* limit

Expected *CL*_s limit

± 1σ

 $\pm 2\sigma$

122

124

 $H \rightarrow \gamma \gamma$

Ldt = 20.3 fb⁻¹

126

ttH channels comb. ATLAS preliminary

128

130

Data 2012 vs = 8 TeV

Conclusion I

- The significance of the newly observed particle in diphoton final state reaches 7.4 σ.
- The mass of the particle is measured to be $m_H = 126.8 \pm 0.2(stat) \pm 0.7(syst) \text{ GeV}$
- The signal strength @126.8 GeV is $\mu=1.57 \pm 0.22 (stat)^{+0.17}_{-0.13} (syst)^{+0.17}_{-0.12} (theory)$
- Tension between data and SM observed. More data will be needed to confirm or dismiss it.

Conclusion II

- The coupling measurements results are
 - $-\mu_{ggH+t\bar{t}H} \times BR/BR_{SM} = 1.54^{+0.31}_{-0.31}(stat)^{+0.28}_{-0.18}(syst)$
 - $-\mu_{VBF} \times BR/BR_{SM} = 1.63^{+0.78}_{-0.71} (stat)^{+0.53}_{-0.42} (syst)$
 - $-\mu_{VH} \times BR/BR_{SM} = 1.71^{+1.40}_{-1.25} (stat)^{+0.30}_{-0.27} (syst)$
- The observed exclusion limit on $t\bar{t}H, H \rightarrow \gamma\gamma$ at 95% confidence level @126.8 GeV is 5.3×SM prediction. The expected limit is 6.4×SM.
- More updates expected to come later this year from ATLAS. Stay tuned!

Bonus: Animated Invariant mass spectrum

https://twiki.cern.ch/twiki/pub/AtlasPublic/HiggsPublicResults/Hgg-FixedScale-Short2.gif 20

References

- <u>arXiv:0901.0512</u>: Expected Performance of the ATLAS Experiment, Detector, Trigger and Physics
- <u>arXiv:1101.0593</u>: Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables
- <u>arXiv:1201.3084</u>: Handbook of LHC Higgs Cross Sections: 2. Differential Distributions
- <u>ATLAS-CONF-2012-091</u>: Observation of an excess of events in the search for the Standard Model Higgs boson in the gamma-gamma channel with the ATLAS detector
- <u>Phys. Lett. B 716 (2012) 1-29</u>: Observation of a New Particle in the Search for the Standard Moddel Higgs Boson with the ATLAS Detector at the LHC
- <u>ATLAS-CONF-2013-012</u>: Measurements of the properties of the Higgslike boson in the two photon decay channel with the ATLAS detector using 25 fb-1 of proton-proton collision data
- <u>arXiv:1307.1427</u>: Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC
- <u>ATLAS-CONF-2013-080</u>: Search for ttH production in the $H \rightarrow \gamma \gamma$ channel at $\sqrt{s} = 8$ TeV with the ATLAS detector

BACK UP

Peak significance in the inclusive spectrum

VBF categories

- 7 TeV: $|\Delta \eta_{jj}| > 2.8$, $\Delta \phi_{\gamma\gamma,jj} > 2.6$, $m_{jj} > 400$ GeV.
- 8 TeV: Boost Decision Tree (BDT).
 - Inputs: η_{j1} , η_{j2} , $\Delta \eta_{jj}$, m_{jj} , $\eta^* = \eta_{\gamma\gamma} (\eta_{j1} + \eta_{j2})/2$, $\Delta \phi_{\gamma\gamma,jj}$, $\Delta R(\gamma, j)$
 - 2 categories according to BDT score:
 - "Loose": 0.44<BDT<0.74
 - "Tight": BDT>0.74

Phys. Lett. B 716 (2012) 1-29, arXiv:1307.1427

VH categories

- Lepton category (8 TeV only): $VH \rightarrow l\nu/ll\gamma\gamma$.
 - Requiring an isolated electron or muon candidate.
 - Vetoing events with 84 GeV $< m_{e\gamma} < 94$ GeV.
- E_T^{miss} category (8 TeV only): $VH \rightarrow l\nu/\nu\nu\gamma\gamma$. - Requiring E_T^{miss} significance (defined as $E_T^{miss}/\sigma_{E_T^{miss}}$, where $\sigma_{E_T^{miss}} = 0.67 GeV^{1/2} \sqrt{\sum} E_T$) larger than 5.
- Low-mass two-jet category (8 TeV only): $VH \rightarrow jj\gamma\gamma$.
 - $60 \text{ GeV} < m_{jj} < 110 \text{ GeV}.$
 - $-\left|\Delta\eta_{\gamma\gamma,jj}\right|<1$
 - $-p_{Tt} > 70 \text{ GeV}$

arXiv:1307.1427

Phys. Lett. B 716 (2012) 1-29, ATLAS-CONF-2013-012

Signal strength in each category (8 TeV only)

Signal strength

126.8 GeV vs. 125.5 GeV

- 126.8 GeV is the mass of the Higgs boson measured in channel $H \rightarrow \gamma \gamma$ alone
- 125.5 GeV is the mass of the Higgs boson measured combining $H \rightarrow \gamma \gamma$ and $H \rightarrow 4l$
- Because of the large uncertainty on m_H in H → γγ (~700 MeV) channel, using either mass will not result in significant impact on the coupling measurements results

$$-\mu = 1.55 @ m_H = 125.5 GeV$$

 $-\mu = 1.57 @ m_H = 126.8 GeV$

arXiv:1307.1427

Limit results for $t\bar{t}H, H \rightarrow \gamma\gamma$

Table 5: Observed and expected 95% CL limits on the $t\bar{t}H$ production cross section times $H \rightarrow \gamma\gamma$ branching ratio relative to the SM expectation at $m_H = 126.8$ GeV.

	Observed limit	Expected limit	$+2\sigma$	$+1\sigma$	-1σ	-2σ
Combined (with systematics)	5.3	6.4	16.2	9.9	4.6	3.4
Combined (statistics only)	5.0	6.0	13.5	8.9	4.3	3.2
Leptonic (with systematics)	9.0	8.4	21.9	13.2	6.1	4.5
Leptonic (statistics only)	8.5	8.0	18.8	12.1	5.7	4.3
Hadronic (with systematics)	8.4	13.6	36.4	21.6	9.8	7.3
Hadronic (statistics only)	7.9	12.6	29.1	18.9	9.1	6.8

Table 6: Observed and expected 95% CL limits on the inclusive Higgs boson production cross section times $H \rightarrow \gamma \gamma$ branching ratio relative to the SM expectation at $m_H = 126.8$ GeV with the *tTH*-specific selections.

	Observed limit	Expected limit	$+2\sigma$	$+1\sigma$	-1 σ	-20
Combined (with systematics)	4.7	5.4	13.7	8.4	3.9	2.9
Combined (statistics only)	4.4	5.0	11.4	7.5	3.6	2.7
Leptonic (with systematics)	7.6	6.9	17.9	10.8	4.9	3.7
Leptonic (statistics only)	7.1	6.4	15.3	9.8	4.6	3.5
Hadronic (with systematics)	7.7	12.5	34.0	19.9	9.0	6.7
Hadronic (statistics only)	7.2	11.4	26.4	17.2	8.2	6.1

Information about the $t\bar{t}H$ candidate event

- m_{γγ} = 126.6 GeV
- Two unconverted photons with transverse momenta of 61 GeV and 39 GeV
- Electron with $p_T = 90 \text{ GeV}$
- MET = 43 GeV
- Four jets with transverse momenta of 75 GeV, 71 GeV, 50 GeV, and 39 GeV
- One of the jets is b-tagged jet (jet no. 2) with an additional soft muon inside the jet (7.2 GeV)

Higgs production cross section @ 7/8 TeV

Cross section (pb)	7 TeV	8 TeV				
ggH	14.96	19.07				
VBF	1.193	1.558				
WH	0.550	0.6691				
ZH	0.304	0.3794				
tĪΗ	0.083	0.1256				
Total	17.1	21.8				
https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageAt7TeV2012update						

m_H = 126.5 GeV

Uncertainty on Higgs cross section

Table 3: Cross sections for the Standard Model Higgs boson production with $m_H = 126.5$ GeV at $\sqrt{s} = 8$ TeV [57, 58]. The branching ratio to the two photons decay mode is $2.28 \cdot 10^{-3}$ at $m_H = 126.5$ GeV. Gluon fusion and vector boson fusion cross sections are computed in the complex pole scheme at NNLL+NNLO QCD and NLO EW [58]. Associated production cross section are computed with zero-width-approximation at NNLO QCD and NLO EW. The ttH process cross section is computed with zero-width-approximation at NLO QCD. QCD scale (±Scale) and the PDF+ α_s uncertainties are treated as non-correlated [68].

Process	Cross section (pb)	+Scale %	-Scale %	+(PDF+ α_s)%	-(PDF+ α_s)%
ggF	19.07	+7.2	-7.8	+7.5	-6.9
VBF	1.56	+0.2	-0.2	+2.6	-2.7
WH	0.67	+0.2	-0.6	+3.5	-3.5
ZH	0.38	+1.6	-1.5	+3.6	-3.6
ttH	0.13	+3.8	-9.3	+7.8	-7.8

Uncertainties on the signal yield

Systematic uncertainties		Value(%)		Constraint
Luminosity		±3.6		
Trigger		±0.5		
Photon Identification		± 2.4		Log-normal
Isolation		± 1.0		
Photon Energy Scale		±0.25		
Branching ratio	±5.9% – ±2	Asymmetric Log-normal		
Scale	ggF: +7.2 _7.8 ZH: +1.6 _1.5	VBF: $^{+0.2}_{-0.2}$ ttH: $^{+3.8}_{-9.3}$	WH: +0.2 -0.6	Asymmetric Log-normal
PDF+ α_s	ggF: +7.5 -6.9 ZH: ±3.6	VBF: +2.6 -2.7 ttH: ±7.8	WH: ±3.5	Asymmetric Log-normal
Theory cross section on ggF	Tight high-mass two-jet: ±48 Loose high-mass two-jet: ±28 Low-mass two-jet: ±30		±48 ±28 ±30	Log-normal

Background model & uncertainty

Category	Parametrisation	Uncertain	nty $[N_{\text{evt}}]$
		$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$
Inclusive	4th order pol.	7.3	12.0
Unconverted central, low p _{Tt}	Exp. of 2nd order pol.	2.1	4.6
Unconverted central, high pTt	Exponential	0.2	0.8
Unconverted rest, low p_{Tt}	4th order pol.	2.2	11.4
Unconverted rest, high p _{Tt}	Exponential	0.5	2.0
Converted central, low p_{Tt}	Exp. of 2nd order pol.	1.6	2.4
Converted central, high p_{Tt}	Exponential	0.3	0.8
Converted rest, low p_{Tt}	4th order pol.	4.6	8.0
Converted rest, high p _{Tt}	Exponential	0.5	1.1
Converted transition	Exp. of 2nd order pol.	3.2	9.1
Loose high-mass two-jet	Exponential	0.4	1.1
Tight high-mass two-jet	Exponential	-	0.3
Low-mass two-jet	Exponential	-	0.6
$E_{\rm T}^{\rm miss}$ significance	Exponential	-	0.1
One-lepton	Exponential	0 	0.3

Migration uncertainties I

Systematic uncertainties	Category		Value(%)		Constraint
Underlying Event	Tight high-mass two-jet	ggF: ±8.8	VBF: ±2.0	VH, ttH: ±8.8	Log-normal
	Loose high-mass two-jet	ggF: ±12.8	VBF: ±3.3	VH, ttH: ±12.8	
	Low-mass two-jet	ggF: ±12	VBF: ±3.9	VH, ttH: ±12	
Jet Energy Scale	Low pTt	ggF: -0.1	VBF: -1.0	Others: -0.1	Gaussian
67	High <i>p</i> _{Tt}	ggF: -0.7	VBF: -1.3	Others: +0.4	
	Tight high-mass two-jet	ggF: +11.8	VBF: +6.7	Others: +20.2	
	Loose high-mass two-jet	ggF: +10.7	VBF: +4.0	Others: +5.7	
	Low-mass two-jet	ggF: +4.7	VBF: +2.6	Others: 1.4	
	$E_{\rm T}^{\rm miss}$ significance	ggF: 0.0	VBF : 0.0	Others: 0.0	
	one-lepton	ggF: 0.0	VBF: 0.0	Others: -0.1	
Jet Energy Resolution	Low p _{Tt}	ggF: 0.0	VBF : 0.2	Others: 0.0	Gaussian
0.	High <i>p</i> _{Tt}	ggF: −0.2	VBF: 0.2	Others: 0.6	
	Tight high-mass two-jet	ggF: 3.8	VBF: -1.3	Others: 7.0	
	Loose high-mass two-jet	ggF: 3.4	VBF: -0.7	Others: 1.2	
	Low-mass two-jet	ggF: 0.5	VBF: 3.4	Others: -1.3	
	$E_{\rm T}^{\rm miss}$ significance	ggF: 0.0	VBF: 0.0	Others: 0.0	
	one-lepton	ggF: -0.9	VBF: -0.5	Others: -0.1	
	Low-mass two-jet $E_{\rm T}^{\rm miss}$ significance one-lepton	ggF: 0.5 ggF: 0.0 ggF: -0.9	VBF: 3.4 VBF: 0.0 VBF: -0.5	Others: -1.3 Others: 0.0 Others: -0.1	

 η^* modelling

Tight high-mass two-jet: +7.6 Loose high-mass two-jet: +6.2 Gaussian

Migration uncertainties II

Dijet angular modelling	Tight high-mass two-jet: +12.1 Loose high-mass two-jet: +8.5				Gaussian
Higgs p _T	Low p_{Tt} : +1.3 High p_{Tt} : -10.2 Tight high-mass two-jet: -10.4 Loose high-mass two-jet: -8.5 Low-mass two-jet: -12.5 E_T^{miss} significance: -2.0 one-lepton : -4.0				Gaussian
Material Mismodelling		Unconv: -4.0	Conv: +3.5		Gaussian
JVF	Loose High-mass two-jet Low-mass two-jet	ggF: -1.2 ggF: -2.3	VBF: -0.3 VBF: -2.4	Others: -1.2 Others: -2.3	Gaussian
$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss}$ significance	ggF: +66.4	VBF: +30.7	VH, ttH: +1.2	Gaussian
e reco and identification	one-lepton: < 1				Gaussian
e Escale and resolution	one-lepton: < 1				Gaussian
μ reco, ID resolution	one-lepton: < 1				Gaussian
μ spectrometer resolution	one-lepton: 0				Gaussian