

Laboratoire national canadien pour la recherche en physique nucléaire

et en physique des particules

PIENU Experiment at TRIUMF: A Sensitive Probe of New Physics

Aleksey Sher for the PIENU collaboration DPF 2013. Santa Cruz

A. Aguilar-Arevalo¹¹, M. Aoki⁴, M. Blecher⁹, D.I. Britton⁸, D. Bryman⁶, D. vom Bruch⁶, S. Chen¹⁰, J. Comfort¹, M. Ding¹⁰, L. Doria⁵, P. Gumplinger⁵, A. Hussein⁷, Y. Igarashi³, N. Ito⁴, S. Ito⁴, S. Kettell², Y. Kuno⁴, L. Kurchaninov⁵, L. Littenberg², C. Malbrunot¹², R. Mischke⁵, T. Numao⁵, D. Protopopescu⁸, A. Sardorfi², A. Sher⁵, T. Sullivan⁶, D. Vavilov⁵, K. Yamada⁴, Y. Yoshida³

- 1. Arizona State University
- 7. University of Northern British Columbia
- 2. Brookhaven National Laboratory 8. University of Glasgow
- 3. KEK
- 4. Osaka University
- 5. TRIUMF
- 6. University of British Columbia

- 9. Virginia Polytechnical Institute & State University
- 10. Tsinghua University
- 11. Instituto de Ciencias Nucleares
- 12. Stefan-Meyer-Institut

Accelerating Science for Canada

Un accélérateur de la démarche scientifique canadienne

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

- Motivation
- Experiment
- Analysis
 - Lineshape
 - Massive neutrinos
 - $\pi^+ \rightarrow e^+ v$
- Conclusion

Motivation: Decays $\pi^+ \rightarrow e^+\nu$ and $\pi^+ \rightarrow \mu^+\nu$

 π^+

Standard Model:

V.Cirigliano, I. Rossel, Phys. Rev. Lett. 99, 231801 (2007)

$$R_{e/\mu}^{SM} = \frac{\Gamma(\pi \to e\nu + \pi \to e\nu\gamma)}{\Gamma(\pi \to \mu\nu + \pi \to \mu\nu\gamma)} = 1.2352(1) \times 10^{-4}$$

Calculated to extreme precision 0.01% \vec{u} , $\pi^+ \rightarrow \mu^+ \nu$ is preferred due to helicity suppression (V-A)

Experimental result:

TRIUMF: D. I. Britton et al., Phys. Rev. D 49, 28 (1994) PSI: G. Czapek et al. Phys. Rev. Lett. 70:17-20,(1993)

 $R_{e/\mu}^{\exp} = 1.231(4) \times 10^{-4}$

Large gap O(10²) in precision between Theory and Measurement

PIENU: aims at <0.1% in BR measurement

 $e^{+} \mu^{+}$

Motivation

Beyond the Standard Model

- Non universality
- Pseudoscalar interaction: helicity suppression \rightarrow very attractive effective mass reach

$$1 - \frac{R_{e/v}^{New}}{R_{e/v}^{SM}} \sim \pm \frac{\sqrt{2}\pi}{G_{\mu}} \frac{1}{\Lambda_{eP}^2} \frac{m_{\pi}^2}{m_e(m_d + m_u)} \sim \left(\frac{1 TeV}{\Lambda_{eP}}\right)^2 \times 10^3 \qquad \textbf{0.1\% BR} \rightarrow \Lambda_{eP} \sim \textbf{1000 TeV}$$

- Others:

Massive v's R.E. Schrock Rhys. Rev. D 24, 5 (1981)

Scalar couplings

.

B.A. Campbell & David W. Maybury Nucl. Phys. B, 709 419-439 (2005)

R-Parity violation SUSY M.J. Ramsey-Musolf, S. Su & S. Tulin, Phys. Rev. D 76, 095017 (2007) Decay mode (g_{μ}/g_{e}) $\tau \rightarrow \mu / \tau \rightarrow e$ 1.0018 ± 0.0014 $\pi \rightarrow \mu / \pi \rightarrow e$ 1.0021 ± 0.0016 $K \rightarrow \mu / K \rightarrow e$ 0.998 ± 0.004 $K \rightarrow \pi \mu / K \rightarrow \pi e$ 1.002 ± 0.002 $W \rightarrow \mu / W \rightarrow e$ 0.997 ± 0.010

Agreement with SM \rightarrow constraints for BSM Disagreement with SM \rightarrow New Physics

Pion decay branching ratio is one of the most precise tests of charged current lepton universality

Experiment: technique

Stop pions in an active target Measure decay e⁺ energy and time

Discrimination of the decay mode

- Energy deposit in calorimeter
- Energy deposit in target

Estimation of raw branching ratio

 Simultaneous fitting of time spectra pi-e and pi-mu-e (high and low energy region) Important:

Tail correction pi DIF

Acceptance

Experiment: detector concept

- 60MHz FADC for Crystals
- Pileup rejection and Pulse Shape Fit

Experiment: realization

1 Csl

Nal

Wire Chamber

Detector

Scint + Si Strips

Mechanical Design and Realization

- Nal/Csl calorimeter needs to be mobile for response (lineshape) measurements
- Scintillator array modularity for test measurements
- Minimize scattering of the decay positrons and maximize acceptance

High purity π^+ beam at TRIUMF

 e^+ suppression (x100) by introduction of a Lucite degrader in the 75 MeV/c beamline, and a lead collimator at the focus of the third bending dipole (~10m after the production target)

A. Aguilar-Arivalo et al. Nucl. Instr. and Methods A 609 (2009) Assembled and commissioned in 05/2009

Experiment: data taking

Beam:

50 Khz pion stops in the target

 $\pi \rightarrow ev$ Nal + Csl > 46 MeV OR Early decay time (4-40ns)

Auxiliary: Cosmic, e+, Xe lamp

Triggers: 600 Hz during normal data taking

 $\pi \rightarrow \mu \rightarrow e$ Prescale: x16

Inspection interval is -300 to +500 ns

Information recorded by 500 MHz digitizers for all plastic scintillators in the range of (-6 μ s;+2 μ s) around π^+ time.

Analysis: Nal lineshape

MC without Hadronic interactions

Data (closed circles with error bars)

MC with Hadronic interactions

Peaks are consistent with neutrons escaping A. Aguilar-Arivalo et al. Nucl. Instr. and Methods A (2010)

This effect isn't properly modeled in G4 and influences the amount of low energy tail

Analysis: Massive neutrinos in $\pi^+ \rightarrow e^+ v$

A heavy sterile neutrino will appear as an extra peak in the $\pi^+ \rightarrow e^+ v$ energy spectrum. $\pi^+ \rightarrow \mu^+ \rightarrow e^+$ background is the problem

- timing (2-33 ns) τ = 26ns and 2.2 µs for π^+ and μ^+
- Energy deposit in beam + Target counters
- kink in the incoming particle trajectory $\pi^{\scriptscriptstyle +}$ decays in flight

- acceptance improves peak resolution

Pion Decays In Flight (PDIF) diagram

Analysis: Massive neutrinos in $\pi^+ \rightarrow e^+ \nu$

M. Aoki et al. Phys. Rev. D 84, 052002 (2011)

Analysis: PIENU 2010 data

Before we start.....

Data is blinded by altering the number (yield) of PIENU decays

Very basic selection after calibration is done and waveforms are fitted

- π^+ using dE/dx, TOF
- Pileup cuts
- Fiducial cuts

Analysis: PIENU 2010 data

- Fit is simultaneous (-290ns:530ns)
- Backgrounds are included
- Common χ^2 is minimized

Br^{blind} still to be corrected for:

- low energy tail
- Energy dependent Acceptance
- Muon Decay In Flight correction

Systematic effects of the fit are being finalized

Reduced $\chi^2 = 1.07$

 $Br^{blind} = 1.2XXX(23) \times 10^{-4}$

Analysis: tail correction

Tail Correction: amount of $\pi \rightarrow ev$ events missing from the high energy region

Lower limit Tail fraction: $T^{Lower \ Limit} = (1.13 \pm 0.07(stat) \pm 0.1(syst))\%$

Analysis: tail correction

TG cut Correction: amount of $\pi \rightarrow ev$ tail events missing from the suppressed spectrum due to the Total Energy cut.

Majority of higher Total energy $\pi \rightarrow ev$ decays are events with Bhabha scattering in the target

Total Energy recorded in the Target and

 $\pi^+ \rightarrow \mu^+ \rightarrow e^+$

upstream detectors

10⁶

10⁵

 $\pi^+ \rightarrow e^+ \nu$

Counts

Analysis: tail correction

- Upper limit on the tail correction is estimated using lineshape measurement (data)
- 10 different entrance angle measurements performed using a 70 MeV/c e⁺ beam

Tail is measured with positron beam, but has to be related to $\pi^+ \rightarrow e^+ \nu$ tail.

Correction to the MC (due crystal response) is extracted from the DATA/MC comparisons And MC is used to simulate the PIENU tail.

Various systematic effects due to uncertainties in the following parameters:

Beam angle:+0.003/-0.002%Center of rotation:+0.005/-0.004%Beam momentum spread:no effectBeam spatial spread:+0.009%/-0.007%T2 Calibration (selection cuts):+/- 0.001%

Total Tail also includes: Bhabha events contribution and Radiative $\pi^+ \rightarrow e^+ v \gamma$ decays. With their respective systematic uncertainties: **T**^{UpperLimit} = (2.25 ± 0.057(syst)) %

Analysis: tail correction

PRELIMINARY

T^{UpperLimit} = (2.25 ± 0.057(syst)) %

 $T^{Lower \ Limit} = (2.09 \pm 0.07(stat) \pm 0.14(syst)) \%$

Combining upper and lower limits yields:

PIENU Low Energy Tail Fraction: T = $(2.17 \pm 0.07(stat) \pm 0.1(syst))\%$

Analysis: acceptance correction

Acceptance Correction is small,

and has to rely on the MC

Various systematic effects are estimated. Deviations are within statistical uncertainty (0.0004)

MC validation effort focusing on

- Bhabha scattering
- Multiple scattering
- Annihilation in flight Is underway...

Case	Description	Ratio of acceptances
		at R=60 mm $$
π stop in Tg	[mm]	
I.a)	z = 0.08 (nominal)	0.9994
I.b)	z = +1	0.9997
I.c)	z =-1	0.9993
I.d)	$\sigma = 1\%$	0.9996
Displacement	[mm]	
II.a)	z WC3 = +2	1.0000
II.b)	z WC3 = -2	0.9999
II.c)	z S3 = +0.2	0.9995
II.d)	z S3 = -0.2	0.9992
III.a)	x WC3 = +0.2	0.9988
III.b)	x WC3 = -0.2	0.9996
III.c)	y WC3 = $+0.2$	0.9997
III.d)	y WC3 = -0.2	0.9997
III.e)	x S3 = +0.02	0.9996
III.f)	x S3 = -0.02	0.9998
III.g)	y S3 = +0.02	1.0002
III.h)	y S3 = -0.02	0.9999

2010 Data Analysis is being finalized

- Systematics for Tail Correction are $\sim 0.1\%$
- Finalization of the Fit systematic effects up to 0.1% level is in progress
- All cut parameters to vary as a final check:
 - Energy separation Threshold
 - Acceptance Definition (Reconstructed R coordinate in the WC3 middle plane)

-

DATA Quality assessment of the 2009,2011, and 2012 data is in progress.

Conclusion

- Experiment finished taking data in 2012 and is dismantled
- PIENU aims to measure $Br(\pi \rightarrow ev + \pi \rightarrow ev\gamma)$ to 0.1% level
- "Blind" Analysis of the PIENU data is underway
- Results are coming out

A. Aguilar-Arivalo et al. Nucl. Instr. and Methods A 609 (2009)
A. Aguilar-Arivalo et al. Nucl. Instr. and Methods A (2010)
M. Aoki et al. Phys. Rev. D 84, 052002 (2011)

 Complemented by PEN, a PSI-based experiment (analysis is also in progress)

Stay tuned.....

Laboratoire national canadien pour la recherche en physique nucléaire

et en physique des particules

On behalf of the PIENU collaboration:

Thank you for your attention

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

TRIUMF: Alberta | British Columbia | Calgary Carleton | Guelph | Manitoba | McMaster Montréal | Northern British Columbia | Queen's Regina | Saint Mary's | Simon Fraser | Toronto Victoria | Winnipeg | York

