Spin measurement of the Higgs-like resonance observed in the two-photon decay channel in ATLAS

Andrew Hard
The University of Wisconsin-Madison
Meeting of the APS DPF, Santa Cruz, CA
August 15, 2013

## Table of contents

## Content

Motivation for the $H \rightarrow \gamma y$ measurement
Discriminating variable $\cos \left(\theta^{*}\right)$
Analysis models
Results \& conclusions
References
Appendices

## Motivation

A new particle has been observed in the $\gamma \gamma, \mathbf{Z Z}$, and WW channels by ATLAS and CMS!

Now it is time to determine what exactly we found...

Di-photon decay indicates the new particle is a boson

- Landau-Yang theorem excludes the spin 1 hypothesis
- Other integer spins remain as possibilities

Difficult to reject all spin 2 models

- Separate the standard model $\left(J^{P}=0^{+}\right)$signal hypothesis from "graviton-like" models ( $J^{P}=2^{+}$)
- Remaining model dependence lies in the coupling strengths of the spin 2 particle to the SM fields



## Separate signal from background with fit to the Yy mass

- Narrow resonance with a large background
- Excellent mass resolution ( 1.77 GeV )
- Divide events into categories and fit the signal peak ( $m_{H}=126.5 \mathrm{GeV}$ )


## The discriminating variable $\cos \left(\theta^{*}\right) \operatorname{cs}$

Spin of the boson creates angular correlation between the decay products (in this case, the two photons)


Relative $p_{T}$ cuts on the photons remove most correlation with $\boldsymbol{m}_{y r}$

Collins-Soper frame used to get reference axis $z^{\prime}$ for $\cos \left(\theta^{*}\right)$

- z-axis bisects angle between the momenta of colliding hadrons
- Minimizes impact of ISR
- Better $0^{+} / 2^{+}$discrimination



## $20.7 \mathrm{fb}^{-1}$ of data at $\sqrt{\mathrm{s}}=8 \mathrm{TeV}$ from the LHC in 2012

## Photon reconstruction

- Energy scale calibrations (and smearing for MC) from $Z \rightarrow e e$
- $p_{T}>25 \mathrm{GeV}$
- $|\eta|<2.37$ excluding $1.37<|\eta|<1.56$ (excluding calo. transition region)
- $\quad \eta$ corrections from electromagnetic calorimeter pointing.
- Rectangular "tight" ID cuts on calorimeter shower shapes.
- Isolation:

$$
\begin{aligned}
& \sum E_{T}^{C a l o}(\Delta r=0.4)<6.0 \mathrm{GeV} \\
& \Sigma p_{T}^{\text {Track }}(\Delta r=0.2)<2.6 \mathrm{GeV}
\end{aligned}
$$

## Event selection

- Trigger: EF_g35_loose_g25_loose
- Vertex reconstruction with artificial neural network, using pointing capabilities of the ATLAS EM calo.
- $p_{T, 1} / \mathrm{m}_{\mathrm{YY}}>0.35, \quad p_{T, 2} / \mathrm{m}_{\mathrm{YY}}>0.25$
- $105 \mathrm{GeV}<\mathrm{m}_{\mathrm{YY}}<160 \mathrm{GeV}$



## Signal model from MC

## Standard Model Higgs ( $\mathrm{J}^{P}=0^{+}$)

- NLO predictions from POWHEG + PYTHIA8 parton showering.
- Tuned to reproduce the re-summed $p_{T}$ calculation of the HqT program


## Spin 2 Model ( $\mathrm{J}^{\mathrm{P}}=\mathbf{2}^{+}$)

- LO predictions from JHU generator + PYTHIA parton showering
- Transverse momentum comes from parton showering in the initial state
- Large impact of Higgs $p_{T}$ on $\boldsymbol{\operatorname { c o s }}\left(\boldsymbol{\theta}^{*}\right)$
- Reweight $p_{T}$ to POWHEG prediction:
$w\left(p_{T}\right)=\frac{1}{\sigma_{\text {POWHEG }}} \frac{d \sigma_{\text {POWHEG }}}{d p_{T}} / \frac{1}{\sigma_{\text {PYTHIA }}} \frac{d \sigma_{\text {PYTHIA }}}{d p_{T}}$


A systematic uncertainty for the $p_{T}$ weights on the $2^{+}$signal is derived using the difference between the un-weighted and weighted distributions.

## Signal-background interference

## Destructive interference between $g g \rightarrow \gamma \gamma$ non-resonant production and the $g g \rightarrow H \rightarrow \gamma Y$ process

- Correction calculated in bins of $\cos \left(\theta^{*}\right)$ and applied as an event weight to modify expected signal yield
- Larger corrections at high values of $\left|\cos \left(\theta^{*}\right)\right|$
- A systematic uncertainty is assigned by taking the difference between the $\left|\cos \left(\theta^{*}\right)\right|$ shapes with and without the interference correction


Corrections were only computed for the $0^{+}$model, though there would be (model dependent) interference for $\mathbf{2}^{+}$as well

## Analysis method 1 (of 2)

## Events are divided into 3 regions based on the y mass

Side-bands: 1D fits in $m_{Y V}$

- $105 \mathrm{GeV}<m_{y r}<122 \mathrm{GeV}$ and $130 \mathrm{GeV}<m_{y Y}<160 \mathrm{GeV}$
- Background: a $5^{\text {th }}$ order Bernstein polynomial function
- Signal: Crystal Ball + Gaussian function for narrow resonance

Signal region: 2D fits in $m_{y \gamma}$ and $\cos \left(\theta^{*}\right)$

- $122 \mathrm{GeV}<m_{y \gamma}<130 \mathrm{GeV}$
- Multiple of two 1D shapes:

$$
f\left(\cos \theta^{*}, m_{\eta \gamma}\right)=f_{c}\left(\cos \theta^{*}\right) \cdot f_{m}\left(m_{y \gamma}\right)
$$

The method assumes no $\boldsymbol{m}_{y \gamma}-\cos \left(\theta^{*}\right)$ correlation.

Side-bands


## Signal region fit

## 2D fits for signal and background in the signal region are constructed by multiplying two 1D templates

## Background fit

- $\boldsymbol{m}_{r y}$ is a 1D analytic $5^{\text {th }}$ order Bernstein polynomial function (fit simultaneously in all regions)
- $\boldsymbol{\operatorname { c o s }}\left(\boldsymbol{\theta}^{*}\right)$ template from the mass sidebands in data.


## Signal fit

- $m_{r y}$ is an 1D analytic Crystal Ball + Gaussian function (fit simultaneously in all mass regions)
- $\boldsymbol{\operatorname { c o s }}\left(\boldsymbol{\theta}^{*}\right)$ is a 1 D histogram template derived from MC.



## Correlation between $m_{w v}$ and $\cos \left(\theta^{*}\right)$




Analysis method \#1 assumes no correlation between the two observables $\rightarrow$ check assumption in data sample

Compare the 1D×1D expectation to the observed events
Gaussian distribution of fluctuations away from the $m_{y Y} \times \cos \left(\theta^{*}\right)$ expectation $\rightarrow$ correlations between the two variables are small

## Analysis method 2

## Use $\cos \left(\theta^{*}\right)$ to create 10 event categories for the analysis

- Make 1D $m_{r y}$ fits of $\mathrm{S}+\mathrm{B}$ shapes in in each of the $\cos \left(\theta^{*}\right)$ bins
- Ten simultaneous 1D fits to $m_{r y}$ instead of one 2D fit
- Signal: Crystal Ball + Gaussian fit
- Background: 2 $2^{\text {nd }}$ order exponential


Ref. [2] polynomial or $3^{\text {rd }}$ order Bernstein polynomial

## Spin hypotheses predict different signal yields per category

## Similar to $1^{\text {st }}$ analysis

- Can assume de-correlation between $m_{r y}$ and $\cos \left(\theta^{*}\right)$ by simultaneously fitting background shape in each category, but this is not necessary.


## Likelihood models

## Analysis method 1

2 dimensions in the PDFs entering the likelihood

$$
-\ln L=\left(n_{S}+n_{B}\right)-\sum_{\text {events }} \ln \left[n_{S} \cdot f_{S}\left(\left|\cos \theta^{*}\right|\right) \cdot f_{S}\left(m_{\gamma^{\prime}}\right)+n_{B} \cdot f_{B}\left(\left|\cos \theta^{*}\right|\right) \cdot f_{B}\left(m_{y^{\prime}}\right)\right]
$$

## Analysis method 2

$$
m_{\gamma v}
$$

1 dimension in the PDFs entering the likelihood, sum over $\cos \left(\theta^{*}\right)$ categories

$$
-\ln L=\left(n_{S}+n_{B}\right)-\sum_{i=1}^{\substack{N_{\text {Lesequ }} \\ \text { cevents }}} \sum_{\text {event }} \ln \left[n_{S} \cdot \varepsilon_{S}^{i} \cdot f_{S}^{i}\left(m_{r \gamma}\right)+n_{B}^{i} \cdot f_{B}^{i}\left(m_{y \gamma}\right)\right]
$$

Sum over $\cos \left(\theta^{*}\right)$ categories
$m_{\gamma \gamma}$

## Test statistic

## Analysis uses likelihood ratio test statistic $q$ :

$$
q=\log \frac{L\left(J^{P}=0^{+}, \hat{\hat{\mu}}_{0^{+}}, \hat{\hat{\theta}}_{0^{+}}\right)}{L\left(J^{P}=2^{+}, \hat{\hat{\mu}}_{2^{+}}, \hat{\hat{\theta}}_{2^{+}}\right)}
$$

- $L=$ maximum likelihood estimator, evaluated under $0^{+}$or $2^{+}$hypothesis.
- $\hat{\hat{\mu}}=$ value of signal strength fitted under the hypothesis
- $\hat{\theta}=$ value of nuisance parameters fitted under the hypothesis


## Use test statistic q distributions (obtained using pseudoexperiments) to calculate $p_{0}$ values.

- $p_{0}\left(J^{P}\right) \rightarrow$ the probability of the data for the $J^{P}$ signal hypothesis fluctuating to the observed value of the test statistic.

$$
p_{0}\left(J^{P}=2^{+}\right)=\int_{q^{m}}^{\infty} g_{2^{+}}(q) d q \quad p_{0}\left(J^{P}=0^{+}\right)=\int_{-\infty}^{q^{m}} g_{0^{+}}(q) d q
$$

Exclusion confidence level (CL) from ratio of $p_{0}$ values:

$$
C L\left(J^{P}=2^{+}\right)=1-C L_{S}\left(J^{P}=2^{+}\right)=1-\frac{p_{0}\left(2^{+}\right)}{1-p_{0}\left(0^{+}\right)}
$$

## Analysis results



Profiled signal events vs. expected values for the $J^{P}=0^{+}$hypothesis.

Able to exclude the $J^{P}=2^{+}$ hypothesis in favor of $J^{P}=0^{+}$at:
99.3\% CL (analysis \#1)
89.4\% CL (analysis \#2)


Expected distributions of the test statistics $g_{0+}(q)$ and $g_{2+}(q)$ from pseudo-experiments.

Shaded areas correspond to the $p_{0}$ values for the hypothesis


Sensitivity of the analysis is higher for small $q q$ production fractions Signal shape in $\cos \left(\theta^{*}\right)$ for $75 \% q q 2^{+}$is very similar to $g g 0^{+}$
Observations favor $0^{+}$hypothesis over $2^{+}$at every $f_{q q}$ point

## Conclusions

The $H \rightarrow y \gamma$ channel provides a useful tool for studying the properties of the year-old Higgs-like boson.
$20.7 \mathrm{fb}^{-1}$ of 8 TeV data were used to set limits on gravitonlike $J^{P}=2^{+}$models (currently no sensitivity to parity).

Able to exclude the $100 \% g g$ produced $J^{P}=2^{+}$models in favor of $0^{+}$with $99.3 \% C L$ with the $1^{\text {st }}$ method (or $89.4 \% C L$ for the $2^{\text {nd }}$ analysis method).

In comparison (Ref. [3]):
CMS excludes $\mathrm{J}^{\mathrm{P}}=2^{+}$in favor of $0^{+}$with $39.1 \%$ CL

## References

## ATLAS and CMS Conference Notes and Publications

1a Evidence for the spin-0 nature of the Higgs boson using ATLAS data http://arxiv.org/abs/1307.1432
1b Evidence for the spin-0 nature of the Higgs boson using ATLAS data (auxiliary plots)
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2013-01/
2 Study of the spin of the Higgs-like boson in the two photon decay channel using $20.7 \mathrm{fb}^{-1}$ of pp collisions collected at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$ with the ATLAS detector https://cds.cern.ch/record/1527124
3 Properties of the observed Higgs-like resonance decaying into two photons (CMS) https://cds.cern.ch/record/1558930? In=en
4 Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb -1 of proton-proton collision data http://cds.cern.ch/record/1523698

5 Measurements of the Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC http://arxiv.org/abs/1307.1427

## Additional References

6 L. J. Dixon and M. S. Siu, Resonance continuum interference in the diphoton Higgs signal at the LHC, Phys. Rev. Lett. 90 (2003) 252001, arXiv:hep-ph/ 0302233 [hep-ph] http://arxiv.org/pdf/hep-ph/0302233.pdf

## Appendix

## Correlation between $m_{v v}$ and $\cos \left(\theta^{*}\right)$




The expected number of events is defined as follows:

$$
n^{\exp }\left[m_{\gamma \gamma}\right]\left[\cos \theta^{*}\right]=\frac{\overbrace{\sum_{m_{\gamma}^{\prime}} n^{o b s}\left[m_{\gamma \gamma}^{\prime}\right]\left[\cos \theta^{*}\right]}^{=n^{o b s}\left[\cos \theta^{*}\right]} \cdot \overbrace{\sum_{\cos \theta^{* \prime}} n^{o b s}\left[m_{\gamma \gamma}\right]\left[\cos \theta^{* \prime}\right]}^{=n^{o b s}\left[m_{\gamma \gamma}\right]}}{n^{\text {tot }}}
$$

The statistical uncertainty is defined:

$$
\left(\sigma^{e x p}\left[m_{\gamma \gamma}\right]\left[\cos \theta^{*}\right]\right)^{2}=n^{e x p}\left[m_{\gamma \gamma}\right]\left[\cos \theta^{*}\right]+\left(n^{e x p}\left[m_{\gamma \gamma}\right]\left[\cos \theta^{*}\right]\right)^{2} \cdot\left(\frac{1}{n^{o b s}\left[m_{\gamma \gamma}\right]}+\frac{1}{n^{o b s}\left[\cos \theta^{*}\right]}+\frac{1}{n^{t o t}}\right)
$$





$\mathrm{M}_{\mathrm{vy}}$ distributions in 10 categories for $2^{\text {nd }}$ analysis method




$\mathrm{M}_{\mathrm{v} \mathrm{v}}$ distributions in 10 categories for $2^{\text {nd }}$ analysis method



Fitting the $J^{P}=0^{+}$hypothesis


Fitting the $J^{P}=\mathbf{2}^{+}$hypothesis


The figures above compare the profiled number of signal events in data (points) to the expected number of signal events (solid line). The results of fitting data are slightly different for the two signal hypotheses since different likelihood models are tested.

Table of Results for $100 \% \mathrm{gg}$ production of $0^{+}$

| Analysis | Spin hypothesis | Signal events | Expected pvalues (\%) | Observed pvalues (\%) | $\begin{gathered} 1-\mathrm{CL}_{\mathrm{s}}\left(2^{+}\right) \\ (\%) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Analysis 1 | $\begin{aligned} & 0+ \\ & 2+ \end{aligned}$ | $\begin{aligned} & 690 \pm 150 \\ & 620 \pm 160 \end{aligned}$ | $\begin{aligned} & 1.2 \\ & 0.5 \end{aligned}$ | $\begin{gathered} 58.8 \\ 0.3 \end{gathered}$ | 99.3 |
| Analysis 2 | $\begin{aligned} & 0+ \\ & 2+ \end{aligned}$ | $\begin{aligned} & 570 \pm 120 \\ & 590 \pm 130 \end{aligned}$ | $\begin{aligned} & 1.9 \\ & 1.7 \end{aligned}$ | $\begin{gathered} 21.1 \\ 8.4 \end{gathered}$ | 89.4 |




With analysis method 2, the exclusion is not as strong:

$$
2^{+} \text {excluded in favor of } 0^{+} \text {at } 89.4 \% \mathrm{CL}
$$

The compatibility of the results from the two analysis methods was studied with pseudo-experiments
$10 \%$ probability of observing a comparable difference in $p$-values





