The MAJORANA DEMONSTRATOR
double-beta decay experiment

Graham Giovanetti
on behalf of the MAJORANA Collaboration
The MAJORANA Collaboration

Black Hills State University, Spearfish, SD
Kara Keeter

Duke University, Durham, North Carolina, and TUNL
Matthew Busch, James Esterline, Gary Swift, Werner Tornow

Institute for Theoretical and Experimental Physics, Moscow, Russia
Alexander Barabash, Sergey Konovalov, Vladimir Yumatov

Joint Institute for Nuclear Research, Dubna, Russia
Viktor Brudanin, Slava Egorov, K. Gusev, Oleg Kochetov, M. Shirchenko, V. Timkin, E. Yakushev

Lawrence Berkeley National Laboratory, Berkeley, California and the University of California - Berkeley
Nicolas Abgrall, Mark Anman, Paul Barton, Yuen-Dat Chan, Alex Hegai, Paul Luke, Ryan Martin, Susanne Mertens, Alan Poon, Kai Vetter, Harold Yaver

Los Alamos National Laboratory, Los Alamos, New Mexico
Melissa Boswell, Steven Elliot, , Johnny Goett, Keith Rielage, Larry Rodriguez, Michael Ronquest, Harry Salazar, Wenqin Xu

North Carolina State University, Raleigh, North Carolina and TUNL
Dustin Combs, Lance Leviner, David G. Phillips II, Albert Young

Oak Ridge National Laboratory, Oak Ridge, Tennessee
Fred Bertrand, Greg Capps, Alfredo Galindo-Uribarri, Kim Jeskie, David Radford, Robert Varner, Brandon White, Chang-Hong Yu

Osaka University, Osaka, Japan
Hiroyasu Ejiri, Ryuta Hazama, Masaharu Nomachi, Shima Tatsuji

Pacific Northwest National Laboratory, Richland, Washington
EStanislao Aguayo, Jim Fast, Eric Hoppe, Richard T. Kouzes, Brian LaFerriere, John Orrell, Nicole Overman, Doug Reid, Aleksandr Soin

Shanghai Jiaotong University, Shanghai, China
James Loach

South Dakota School of Mines and Technology, Rapid City, South Dakota
Adam Caldwell, Cabot-Ann Christofferson, Stanley Howard, Anne-Marie Suriano, Jared Thompson

Tennessee Tech University, Cookeville, Tennessee
Mary Kidd

University of Alberta, Edmonton, Alberta
Aksel Hallin

University of North Carolina, Chapel Hill, North Carolina and TUNL
Florian Fraenkle, Graham K. Giovanetti, Matthew P. Green, Reyco Henning, Mark Howe, Sean MacMullin, Benjamin Shanks, Christopher O'Shaughnessy, Jacqueline Strain, Kris Vorren, John F. Wilkerson

University of South Carolina, Columbia, South Carolina
Frank Avignone, Vince Guiseppe, Leila Mizouni, Clint Wiseman

University of South Dakota, Vermillion, South Dakota
Nathan Snyder

University of Tennessee, Knoxville, Tennessee
Yuri Efremenko, Sergey Vasilyev

University of Washington, Seattle, Washington
Tom Burritt, Clara Cuesta, Jason Detwiler, Peter J. Doe, Julieta Gruszko, Greg Harper, Jonathan Leon, David Peterson, R. G. Hamish Robertson, Alexis Schubert, Tim Van Wechel
0νββ experimental signature

observation implies

• neutrino is a Majorana fermion
• lepton number is violated
• plausible scenario for generation of baryon asymmetry
• model dependent mass measurement

Germanium-76: 32 protons 44 neutrons

Q = 2039 keV

Selenium-76: 34 protons 42 neutrons

\[\text{Germanium-76: 32 protons 44 neutrons} \]

\[\text{Selenium-76: 34 protons 42 neutrons} \]

\[Q = 2039 \text{ keV} \]
0νββ rate and m_{ββ}

\[[T_{1/2}^{0νββ}]^{-1} = G^{0νββ} |M^{0νββ}|^2 < m_{0νββ} >^2 \]

Effective 0νββ mass, m_{ββ} [eV]

Lightest neutrino mass [eV]

Inverted

Normal

KATRIN sensitivity

mixing parameters from PDG 2012
$0\nu\beta\beta$ rate and $m_{\beta\beta}$

\[
[T_{1/2}^{0\nu\beta\beta}]^{-1} = G^{0\nu\beta\beta} |M^{0\nu\beta\beta}|^2 < m_{0\nu\beta\beta} >^2
\]
$0\nu\beta\beta$ rate and $m_{\beta\beta}$

$$[T_{1/2}^{0\nu\beta\beta}]^{-1} = G^{0\nu\beta\beta} |M^{0\nu\beta\beta}|^2 < m_{0\nu\beta\beta} >^2$$

![Graph showing $0\nu\beta\beta$ rate and $m_{\beta\beta}$](image)

- Normal mixing parameters from PDG 2012
- Inverted
- Next generation
- KATRIN sensitivity

Current experiments
backgrounds and sensitivity

\[\langle m_{\beta\beta} \rangle \text{ sensitivity (90\% CL, QRPA NME)} \text{ [meV]} \]

- Zero background
- 0.1 counts/ROI/t/y
- 1 count/ROI/t/y
- 4 counts/ROI/t/y

Mod. Phys. Lett. A 21 (2006), p. 1547 (3\(\sigma\)): (1.30-3.55) \(\times 10^{25}\) years

Inverted Hierarchy \((m_\nu \rightarrow 0 \text{ eV}) \)
backgrounds and sensitivity

arXiv:1307.4720v1, Gerda phase 1: $> 3 \times 10^{25}$ years
The MAJORANA DEMONSTRATOR

Funded by DOE Office of Nuclear Physics and NSF Particle Astrophysics, with additional contributions from international collaborators.

Goals
- Demonstrate backgrounds low enough to justify building a tonne scale experiment
- Establish feasibility to construct & field modular arrays of Ge detectors.
- Test Klapdor-Kleingrothaus claim
- Search for additional physics beyond the standard model

- Located underground at 4850' Sanford Underground Research Facility
- Background Goal in the 0νββ peak region of interest (4 keV at 2039 keV)
 - 3 counts/ROI/t/y (after analysis cuts)
 - scales to 1 count/ROI/t/y for a tonne experiment
- 40-kg of Ge detectors
 - 30 kg of 86% enriched 76Ge crystals
 - 10 kg of natGe
 - Detector Technology: P-type, point-contact.
- 2 independent cryostats
 - ultra-clean, electroformed Cu
 - 20 kg of detectors per cryostat
 - naturally scalable
- Compact Shield
 - low-background passive Cu and Pb shield with active muon veto
The **MAJORANA DEMONSTRATOR**

- **Poly Shield**
- **Plastic Scintillator**
- **Muon Veto**
- **Lead Shield**
- **Outer Commercial Copper Shield**
- **Inner Electroformed Copper Shield**
Construction of the DEMONSTRATOR is proceeding in three stages.

Protoype Cryostat*
summer 2013

Cryostat 1
early 2014

Cryostat 2
late 2014

*The Prototype Cryostat components are built from OFHC copper.
electroformed copper

- copper is electrodeposited onto stainless steel forms
- a 1.4-cm thick electroform takes approximately 8-12 months to complete.
- required purity levels are < 0.3 μBq 238U/kg Cu and < 0.3 μBq 232Th/kg Cu (substantially cleaner than commercially available)
- done underground
MJD background budget

MJD $\beta\beta(0\nu)$ background goals [cnts/ROI-t-\(\gamma\)]

- Electroformed Cu: 0.888
- OFHC Cu shielding: 0.480
- Lead shielding: 0.195
- Cables: 0.222
- Front ends: 0.270
- Ge (U/Th): 0.067
- Plastics + other: 0.030
- 68Ge, 60Co (enrGe): 0.088
- 60Co (Cu): 0.055
- External γ, (\(\alpha,n\)): 0.100
- Rn, surface α: 0.054
- Ge, Cu, Pb (n, n'\(\gamma\)): 0.210
- Ge(n,n): 0.170
- Ge(n,\(\gamma\)): 0.130
- direct μ + other: 0.030
- ν backgrounds: 0.011

Legend:
- Natural Radioactivity
- Cosmogenic Activation
- External, Environmental
- μ-induced
- Neutrinos
p-type point contact detectors

- allow multiple-site scattering event discrimination
- simple, relatively cheap, and easy to handle
- added benefits from sub-keV thresholds:
 - allow rejection of events from cosmogenically produced 68Ge, a background to $0\nu\beta\beta$.
 - extends physics reach of the DEMONSTRATOR

![Graphs showing charge and current signals for single-site and multi-site events](image)
MJD at Sanford Underground Research Laboratory

- Main MJD lab at 4850L Davis Campus, beneficial occupancy in May 2012.
- Operating Temporary Cleanroom Facility (TCR) at 4850L Ross Campus since Spring 2011.
10 baths at Sanford producing copper since July 2011 about 75% of EFCu complete, including major parts for cryostat 1
parts are manufactured in the MJD clean machine shop at the Davis Campus
8 enriched PPC detectors at SURF (as of 8/13)
2 strings of natural Ge detectors undergoing testing
both strings were constructed in the MJD Davis Campus lab
string 1 is installed in a string test cryostat
tools for automated string characterization are
being built
string 2 is installed in the prototype cryostat
physics beyond the standard model

with sub-keV thresholds, MJD can search for light WIMPS, solar axions, etc...

MALBEK

- 30 inches
- modern lead
- ancient lead
- cryostat
- Ge crystal
- LN dewar
- support frame
physics beyond the standard model

with sub-keV thresholds, MJD can search for light WIMPS, solar axions, etc...

MALBEK

modern lead
ancient lead
cryostat
Ge crystal
LN dewar
support frame
0νββ-decay observation would demonstrate lepton number violation and indicate that neutrinos are Majorana particles constituting a major discovery. Such a discovery would need to be confirmed from independent experiments using different isotopes and measurement techniques.

Construction of MJD well underway and proceeding on schedule.
- Prototype Cryostat: summer 2013
- Cryostat 1: early 2014
- Cryostat 2: end of 2014

During 2014 both MJD Cryo 1 and GERDA Phase II should be collecting data.

Working cooperatively with GERDA towards the establishment of a single international tonne-scale ⁷⁶Ge 0νββ collaboration.
simulated 60 kg-year spectrum
simulated 60 kg-year spectrum

all cuts applied
Tonne-scale background budget

Tonne-scale 76Ge 0νββ background goals [cnts/ROI-t-γ]

- Electroformed Cu
- OFHC Cu shielding
- Lead shielding
- Cables
- Front ends
- Ge (U/Th)
- Plastics + other
- 68Ge, 60Co (enrGe)
- 60Co (Cu)
- External γ, (α,n)
- Rn, surface α
- Ge, Cu, Pb (n, n'γ)
- Ge(n,n)
- Ge(n,γ)
- direct μ + other
- ν backgrounds

Natural Radioactivity
Cosmogenic Activation
External, Environmental
μ-induced
ν-induced
neutrinos
backgrounds and sensitivity

Mod. Phys. Lett. A 21 (2006), p. 1547 (3\(\sigma\)): (1.30-3.55) \(\times 10^{25}\) years

Inverted Hierarchy (\(m_\beta\beta \rightarrow 0\) eV)