Charge and Colour Breaking Constraints in the MSSM

Nikita Blinov1,2 with David Morrissey1

1TRIUMF, Vancouver BC
2University of British Columbia, Vancouver BC

August 15, 2013
APS DPF at UC Santa Cruz
Supersymmetry and Stability

- Supersymmetry is good: naturalness, gauge unification, dark matter
- SM fermions have charged and colored scalar partners \Rightarrow more complicated scalar potential
- Quantum tunneling can destabilize the electroweak vacuum
LHC measured $m_h \approx 126$ GeV

- Strong constraint on the MSSM, since at tree level $\lambda \sim g^2 + g'^2$

$$m_h^2 = m_Z^2 \cos^2 2\beta + (s)\text{tops}! + \cdots$$

- Loop corrections needed to bring m_h up to physical value, depend (primarily) on stop parameters
Higgs Mass in the MSSM

Stop mass matrix:

\[
M_t^2 = \begin{pmatrix} m_{Q_3}^2 + m_t^2 + \Delta_{uL} \\ m_tX_t^* \\ m_{u_3}^2 + m_t^2 + \Delta_{uR} \end{pmatrix}
\]

- \(X_t \) - stop mixing parameter
- \(M_S = (m_{Q_3}m_{u_3})^{1/2} \) - SUSY scale
- Fine-tuning minimized for light stops, i.e. small \(M_S \)

Hall, Pinner & Ruderman JHEP 1204
Draper, Meade, Reece & Shih PRD 85

123 GeV < \(m_h \) < 127 GeV

\(\tan \beta = 10 \)
\(\tan \beta = 50 \)
Supersymmetric Scalar Potential

Stop mixing

\[X_t = A_t^* - \mu / \tan \beta \approx A_t^* \]

\(A_t \) is the cubic coupling in the potential:

\[V \supset A_t \tilde{t}_R^* \tilde{t}_L H_u^0 + \text{h.c.} \]

Light stops \(\Rightarrow \) Large mixing \(X_t \Rightarrow \) Potentially destabilized EW vacuum
Charge and Colour Breaking (CCB) Minima

- Electroweak (EW) vacuum: \(\langle H^0_u, H^0_d \rangle \neq 0 \)

\[
SU(3)_C \times SU(2)_L \times U(1)_Y \rightarrow SU(3)_C \times U(1)_{EM}
\]

- Large \(A_t \Rightarrow \langle H^0_u, H^0_d, \tilde{t}_L, \tilde{t}_R \rangle \neq 0 \)

\[
SU(3)_C \times SU(2)_L \times U(1)_Y \rightarrow \left[\begin{array}{c}
\end{array} \right]
\]

Global minimum of the theory (true groundstate) in general breaks \(SU(3)_C \) and \(U(1)_{EM} \)

\[
\downarrow
\]

Can we exclude parameters that generate a shallow EW and global CCB minima?
Fate of the False Vacuum

Can we exclude parameters that generate a shallow EW and global CCB minima?

Not if the EW vacuum is metastable:

\[\tau_{\text{EW}} > t_0 \sim 10^{10} \text{ years} \]

- Lifetime is determined by the rate of quantum tunneling \(\Gamma \).
- Unstable state \(\Rightarrow \) energy acquires imaginary part such that

\[\Gamma = -\frac{2}{\hbar} \text{Im} E_{\text{EW}} \]
Vacuum Decay Rate

Decay rate per unit volume:

\[\frac{\Gamma}{V} = C \exp(-S_E[\bar{\phi}]/\hbar), \]

Metastability requires \(\Gamma^{-1} > t_0 \)

\[S_E[\bar{\phi}]/\hbar > \log(t_0^4 C) \approx 400 \]

Computing \(S_E[\bar{\phi}] \): Coleman PRD 15, Coleman & Callan PRD 16

- Single field - shooting method (special to 1D boundary value problems) ✓
- Multiple fields:
 1. Path deformation - implemented in CosmoTransitions (by Max Wainwright at UCSC) ✓
 2. Constrained or improved potential with dimensional deformation - algorithms outlined in Konstandin & Huber JCAP 0606 and Park JCAP 1102 - in progress.
The Bounce

\(\bar{\phi} \)

\[V(\phi) \]

\[\rho \]

\(\phi_1 \)

\(\phi_2 \)

\[\bar{\phi}(\rho) \]
Previous Stability Constraints

Analytic: Kounnas, Lahanas & Nanopoulos NPB 236

- Assume VEVs are all equal

$$\langle H_u^0 \rangle = \langle \tilde{t}_L \rangle = \langle \tilde{t}_R \rangle$$

Potential now is a function of 1 VEV, easy to minimize by hand

- Demand *absolute* stability (SM-like minimum is global):

$$V_{CCB} > V_{SML}$$

$$\downarrow$$

$$A_t^2 < 3(m_2^2 + m_{Q3}^2 + m_{\tilde{t}_R}^2)$$

This is neither necessary nor sufficient. More sophisticated analyses by Casas, Lleyda & Muñoz: NPB 471, PLB 380, PLB 389
Previous Metastability Constraints

Numeric

- Scan MSSM parameters
- If \exists global CCB minimum, find $S_E[\phi]$
- If $S_E < 400$ parameters are excluded
- Empirical inequality:

$$A_t^2 + 3\mu^2 < 7.5(m_{Q3}^2 + m_{tR}^2)$$
Previous Metastability Constraints

Why do another analysis?

- m_h has been measured. What does metastability imply for the Higgs parameter space?
- Bounds on stop parameters for direct (LHC) and indirect searches ($b \rightarrow s\gamma$, ...)
- Loop corrections should be included
- More reliable numerics

123 GeV < m_h < 127 GeV

Analytic Bound
Empirical Bound
Preliminary Results - No Higgs Mass Constraint

- SM metastable, ● - SM unstable

- Empirical bound completely invalid

- Analytic result surprisingly robust (except for some extreme values of parameters)
Preliminary Results - Higgs

- SM absolutely stable,
- SM metastable,
- SM unstable

CCB minima appear for $|X_t| \gtrsim 1$ TeV

Most CCB points $X_t \gtrsim 1$ TeV not metastable \Rightarrow excluded
Conclusion

Summary:
- Large values of the stop cubic term A_t lead to appearance of CCB minima
- Models with global CCB minima ruled out if lifetime of SM-like vacuum too short
- Metastability constrains the Higgs parameter space in the MSSM

To do:
- Recompute bounce using independent method
- Include quantum corrections
Backup
Fate of the False Vacuum

- E_{EW} extracted from the matrix element

$$\langle \phi_+ | \exp(-HT/\hbar) | \phi_+ \rangle = \int [\mathcal{D}\phi] \exp(-S_E[\phi]/\hbar)$$

ϕ_+ is the false vacuum.

- RHS evaluated semi-classically by expanding

$$S_E[\phi] = S_E[\bar{\phi}] + \frac{1}{2} (\phi - \bar{\phi}) \frac{\delta^2 S_E}{\delta \phi^2} (\phi - \bar{\phi}) + \ldots$$

- $\bar{\phi}$ is a classical solution such that

$$\frac{\delta S_E}{\delta \phi}[\bar{\phi}] = 0 \Rightarrow \partial^2 \phi = U'(\phi), \text{ BCs: } \lim_{t,|\vec{x}|\to\pm\infty} \bar{\phi}(t, \vec{x}) = \phi_+.$$
Pre-exponential Factor

- Performing the path integral gives

\[\Gamma / V = C \exp(-S_E[\phi]/\hbar), \]

where

\[C = \left(\frac{S_E[\phi]}{2\pi} \right)^2 \left| \frac{\det' \left[-\partial^2 + U''(\phi) \right]}{\det \left[-\partial^2 + U''(\phi_+) \right]} \right|^{-1/2} \]

- \(\det' \) omits translational zero modes
- Prefactor usually estimated as

\[[C] = M^4 \Rightarrow C \approx (100 \text{ GeV})^4 \]

- Numerical computation of the prefactor described in

Min JPA 39, Dunne & Min PRD 72
Loop Corrections

Groundstate of the quantum theory given by the minimum of the effective potential (in DR)

\[V_{\text{eff}}(Q) = V_0(Q) + \Delta V_1(Q), \quad \Delta V_1(Q) = \frac{1}{64\pi^2} \text{Str} \left[\mathcal{M}^4 \left(\ln \frac{\mathcal{M}^2}{Q^2} - \frac{3}{2} \right) \right] \]

- Typical approach: choose \(Q \) s. t. \(\Delta V_1 \approx 0 \Rightarrow \) log corrections reabsorbed into running couplings in \(V_0 \).
- **Issue 1:** \(V_0(Q) \) is now very sensitive to choice of \(Q \): Gamberini, Ridolfi & Zwirner NPB 331
- **Issue 2:** \(V_{\text{eff}}(Q) \) is gauge-dependent: Patel & Ramsey-Musolf JHEP 1107