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Introduction

The spin and relative couplings of the Higgs boson conform to the SM.

[ Measure the details of its production and decay. ]

» Diphoton channel gives high rate and allows a clean signal extraction.
» Work described in ATLAS-CONF-2013-072; new variables below.

Variable Motivation
p¥ Kinematics, and QCD description of ggH
ly™] Kinematics (and one day, PDFs)
Inclusive | cos6*| Spin (model independent!)
Niets Jet multiplicities vary by production mode.
p’# Hardest parton emission: NNLO+NNLL comparisons!
2 jets Pii ggH + VBF: spin and CP; matrix element of 2nd jet.
pF¥ Powerful VBF variable with large theory uncertainties.
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http://cds.cern.ch/record/1562925/

[ Analysis Method ]
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Event Selection and Fiducial Region

Photon and Event-Level Selection (= spin measurement)
» Select the two highest-E7 photons within |n| < 2.37.

» Reconstructed: tight PID and isolation as in coupling/spin.
The transition region 1.37 < |n| < 1.56 is removed.
» Particle-level: truth isolation less than 14 GeV, within AR < 0.4.

» Mass window from 105 < m,, < 160 GeV.
> Require pt/m,, > 0.35(0.25) for the leading (subleading) photon.
» Simplifies background shapes (same as spin analysis).

Jet Selection (= coupling measurement)
» Anti-k; (R = 0.4) jets with pr > 30 GeV and |y| < 4.4.

» Remove overlap with photons and electrons.

» Reco. only: track-based pileup suppression and area-based corrections
for underlying event.
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Analysis Strateg

Differential cross sections amount to different divisions of the total data
sample, binned according to physical observables.
1. In each bin of each observable, the signal is extracted with a signal +
background fit in the m., spectrum.

2. The impact of the detector response on the measured yield of each
bin is then unfolded with correction factors, to ‘truth’ level.

Binned Signal
Extraction

“©[~  ATLAS Simulation Preliminary

Unfolding Factor
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Correction Factors
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Signal Extraction

» Signal models are derived from Monte Carlo, as a function of my.

» Candidate background models are tested with background-only MC,
and required to have minimal bias.

» Ultimately exp{ax + bx?} is used in every bin.
» Extraction performed with a single, simultaneous fit for each
observable, with shared nuisance parameters (incl. my) between bins.
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Correction Factors

The extracted yield of all bins are corrected, using factors derived from
MC of niTruth/niReco..

» Uses SM composition: ggH (87%), VBF (7%), VH (5%), ttH (0.5%).
» This corrects acceptances, efficiencies, and migrations, at once.

» Appropriate for this very-low statistics measurement...
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Systematic Uncertainties on the Correction Facto

Rederive correction factors from alternate, and reweighted, MC samples.
1. Different production modes have different efficiencies, so the sample
composition can affect the correction factors.
» Vary the VBF/VH and ttH components of the MC, within the errors of
the coupling measurement (below).
2. For ggH: swap generators and vary scales (2, %x)

3. Reweight the MC to the observation, to take into account the impact
of the ‘true’ shape.
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Measured us, used to motivate composition variations.
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Total Uncertainties

» The total uncertainty is overwhelmingly statistical.
» Therefore uncorrelated between bins.

> Bin-to-bin correlations are typically ~10%. The largest correlations
between bins are found for p7™¥, and are less than 20%.

» Additional uncertainties from luminosity and efficiencies and
(jets, pileup, etc.).
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Results
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| Inclusive Distributions ]
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Transverse Momentum of the Higgs Boson
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Transverse Momentum of the Higgs Boson

S 2T T T T T
) p Yy & 1.8 ATLAS Preliminary +- data syst. unc. 3

E [ gg-H NLOWPS (Powrestpe) + XH ]

T »—1'6 Mggm NNLO+NNLL (HRes1.0) + XH 1

€ 14 . E

- =+ XH = VBF + VH + tiH E

g 12 Hoyy, (5=8Tev ]

> Sensitive to QCD; theoretical [La=20am
. . . 0.8 E
Interest I1s In resummation at o6t Sm MC C E

[ Yy -iii-iﬁiiisggg PO
ow-pr. 0.4 W Sition
. 0.2

» Harder spectrum, but consistent o s - -

within uncertainties. % ++
» Comparison to NLO POWHEG H! ]
and NNLO+NNLL HREs1.0. o ]

0O 20 40 60 80 100 120 140 160 180 200
Particle level p_rw [GeV]

POWHEG HRESL.0

5 Unfolded Differential Cross Section
X~ p-value 0.55 0.39

Saxon (UPenn) Differential Cross Section in H — ~~ August 13, 2013 12 /21



Transverse Momentum of the Higgs Boson
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Transverse Momentum of the Higgs Boson

/P' 144
T

2T T T T T T T T T T T T T T T T T T
1.8F ATLAS Preliminary +- data syst. unc.
gg—~H NLO+PS (PowHEG+PY8) + XH

[T 99 ~H NNLO*NNLL (HRes1.0) + XH
- XH = VBF +VH +tTH

Hoyy, (§=8TeV

doy,/ dp, [fb/GeV]
-
D

> Sensitive to QCD; theoretical
interest is in resummation at o el
| vy gl
ow-p+-. 0_4 N

» Harder spectrum, but consistent

J’L dt=20.3fb*

o) \Lu\i-v--m

P s s

within uncertainties. % ++ R =EEETEESEeS S S S
» Comparison to NLO POWHEG H! ]
and NNLO+NNLL HRES1.0. I .
0 20 40 60 80 100 120 140 160 180 200
Particle level p_rw [GeV]
POWHEG HRESL.0 Unfolded Differential Cross Section
x> p-value 0.55 0.39
orre|at‘|0“s"

Using All €

Saxon (UPenn) Differential Cross Section in H — ~~ August 13, 2013 12 /21



Rapidity of the Higgs Boson

\yvt

» With my and p}’ this uniquely
defines the kinematics.

» One bin high at large [y7].

» Eventually, sensitive to incoming

PDFs, though there are better
ways to measure this.
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Partial Cross Sections, by Number of Jets
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with Uncertainties from Scale Variations

(W/ Scale Vars ) POWHEG MINLO (model breaks down, since PS is not affected)
x> p-value 0.54 0.44
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Partial Cross Sections, by Number of Jets
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Helicity Angle cos 6" of the Higgs Boson
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Transverse Momentum of the Leading Jet
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Transverse Momentum of the Leading Jet
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[ Events > 2 Jets ]
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Angular Separation of the Two Leading
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Transverse Momentum of the Higgs Boson + Dijet System
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Conclusions

[ Entering a new era of Higgs physics! ]

Direct measurements of differential cross sections of the Higgs boson.
» Full kinematics of Higgs production: my, p}', [y77|!
» Begin to prowde experimental feedback for QCD in Higgs production

(PT » Niets, p’T, etc.), and in particular for variables with theoretical
challenges in current measurements (p').

Overall good agreement, within large statistical uncertainties.

New p37  y"7| |cos0*|  pr  Dey  pi”
POWHEG 054 055 0.38 0.69 0.79 042 0.50

MINLO 0.44 - - 0.67 0.73 045 0.49
HREs 1.0 - 0.39 044
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[ Questions? ]
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Backup
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Signal Model

Analytic descriptions of the signal and background shapes are used in the
yield extraction fit. These shapes must be accurate!

» The signal model evolves predictably as a function of my.

» Fitting an array of masses furnishes us with a parameterization of the
analytic shape for arbitrary my, and allows us to float my in our fits.

» Also used for determining background model (next slide).

4 >

signal width increases with m"

>
m" [GeV]
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Background Model

» Each candidate background model is validated using signal +
background fits to high-statistics background-only MC.

» Models are rejected if the (spurious) fitted signal exceeds 20% of the
background uncertainty.

» The largest fitted signal is taken as an uncertainty on the model.

> In practice, the function exp{am,, + bmZ2_} is used in every bin.

A
High-Statistics Background MC

(Inappropriate) Background Model

(Negative) ”Spurious”Sign;D

m" [GeV]
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Background Model

» Each candidate background model is validated using signal +
background fits to high-statistics background-only MC.

» Models are rejected if the (spurious) fitted signal exceeds 20% of the
background uncertainty.

» The largest fitted signal is taken as an uncertainty on the model.

> In practice, the function exp{am,, + bmZ2_} is used in every bin.

A
High-Statistics Background MC

(Acceptable) Background Model

m" [GeV]
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