

University of Pittsburgh

High-Angle v_{μ} CCQE

Measurements at T2K Using the P0D (Pi-zero Detector) for Low-Energy Events

DPF Santa Cruz 15 August 2013

Damon Hansen

University of Pittsburgh The T2K Experiment

- Long-baseline accelerator neutrino experiment
- v_{μ} disappearance / v_{e} appearance
- Observed v_e apperance at the 7.5 σ level

- Physics goals:
- Precision measurements of neutrino oscillation parameters and crosssections

University of Pittsburgh

Off-Axis Near Detector (ND280)

- Pi-Zero Detector (P0D)
 - Optimized for $NC\pi^{\circ}$ detection
 - Alternating layers of plastic scintillators and water targets
- Tracker: Fine-Grain Detectors (FGD) & Time-Projection Chambers (TPC)
 - Uses high-resolution scintillators and gas chambers for particle ID and momentum reconstruction
- ECAL
 - Detects EM (e's, π 's) particles exiting the P0D/Tracker
- Side Muon Range Detector
 - Measures momenta of lateral muons by range

15 August 2013

DPF Santa Cruz

ν

Where will this analysis fit into T2K's goals?

- (some) Existing P0D analyses
 - NC π^0
 - NC Elastic
 - NuE CCQE
 - P0D to Tracker CCQE & CC inclusive

- (some) Existing (non-P0D) T2K analyses
 - Tracker NuMu CCQE-like
 - Tracker NuMu non-CCQE-like
 - Tracker NuE flux measurement

At T2K accessible energies, the dominant interaction mode is CCQE. P0D-to-Tracker is focused towards higher energy, forwardgoing events. Adding a low-energy, highangle sample will improve ND \rightarrow FD fits, extend angular reach for x-sections, and significantly increase ND statistics.

A note on interaction modes:

University of Pittsburgh

- Defined here by particles leaving the interaction vertex (i.e. by particles which are possible to detect)
- Related but not equivalent to true interaction mode with nuclear target

CCQE	1 muon No other leptons		
CC 1-π	1 muon 1 charged pion		
CC π ⁰	1 muon neutral pion		
NCE	No leptons		
NC 1-π	No muons 1 charged pion		
NC π ⁰	No muons neutral pion		

р

u

Event Selection

• NuMu CCQE events characterized by μ - and p final state particles; looking for event topologies compatible with this interaction mode:

n

- **P0D** Contained
 - _ Single vertex inside P0D fiducial volume (~ 25 cm from edge)
 - 1 or 2 tracks associated with this vertex
 - All tracks contained within the POD active volume
 - No activity within 3 bars from the edge (\sim 7 cm)
 - _ Longest track consistent with a μ
 - _ 2 Tracks: Shortest track consistent with a proton
- Side-Exiting
 - Track exits through the side of the POD, but not out the downstream end
 - Must have matching P0D-ECal object: matching criteria shown later _ Matching SMRD object not required, but used when present.
- **P0D** \rightarrow Tracker
 - _ Existing analysis currently being included into the ND \rightarrow FD fitting

• P0D \rightarrow Anything Else

- _ Not excluded for physics reasons: just too much for 1 person!
- Hope to eventually have a complete sample of all NuMu CC events originating in the P0D DPF Santa Cruz
- 15 August 2013

W

Particle ID

- Tracks in the P0D are most often $\mu\text{-},$ but can also be p, e, $\pi^0,\,\pi^{\scriptscriptstyle\pm}$
- Proton/Muon PID (developed for NCE selection)
 - A profile of expected charge deposition from stopping muons developed from sand muon data
 - Use Most Probable Values and Gaussian sigma for each distance bin to discriminate muons & pions from protons
 - Can be used to separate NC elastic from CCQE in the 1-track contained sample and CC1Pi from CCQE in the 2-track contained sample
 - Can use the profile from the start or the end of the track: Necessary since POD reconstruction treats all single tracks as "forward going"
 - _ Veto Out of P0D events for side-exiting sample?

DPF Santa Cruz

Particle ID:

What does this PID look like for the contained sample?

- _ Strong discrimination between CC & NCE
- _ Longest track PID does little for CC backgrounds
 - CC1Pi produces μ^-
 - Charged π's are effectively identical to μ's
- A simultaneous PID on shortest track in 2 Track sample can reduce CC-other backgrounds

Track Matching

- P0D to P0D-ECal :
 - Fit a line to last two nodes inside the P0D; extrapolate across the gap between the two sub-detectors
 - Difference between extrapolated point and reconstruction object in P0D-ECal < 30 cm
- P0D/P0D-ECal to SMRD:
 - Time difference between P0D Vertex and SMRD object < 100ns
 - SMRD object on same side of detector as P0D-ECal object

Momentum Reconstruction

- Muons in these samples typically have momenta around 300-700 MeV/c
 - In this region, the Bethe-Bloch is effectively flat (i.e. stopping power is a constant)
- Since stopping power is approx. constant, we can reconstruct momentum loss from range
- Inside the P0D, momentum resolution $\sim 5\%$

Momentum Reconstruction: Side-Exiting POD End of Track 2500 Track Position

• Complicated by 2 features:

University of Pittsburgh

- ~80% of tracks entering the P0D-Ecal pass completely through
- Much denser dead material and much less resolution in the SMRD
- Is track-by-track momentum reconstruction possible for this sample?

15 August 2013

-2000

-1500 -1000

-500

0

500

1000

1500

2000

2500

150 100

> 50 -2500

University of Pittsburgh

	Contained		Side-Exiting	
5x10 ²⁰ p.o.t. Water-in MC 2x current T2K water- in data	1 Track 40379 total selected	2 Track 9694 total selected	1 Track 10243 total selected	2 Track 2989
Signal	23724	5600	6201	1848
(true v _µ CCQE in FV)	(0.59)	(0.58)	(0.61)	(0.62)
Out of Fiducial	9094	799	2926	313
	(0.23)	(0.08)	(0.29)	(0.10)
Out of P0D	3973	96	1721	81
(subset of above)	(0.10)	(~0.01)	(0.17)	(0.03)
v _µ Non-CCQE	6862	3122	657	709
(in FV)	(0.17)	(0.32)	(0.06)	(0.24)
Non-v _µ CCQE	266	9	104	13
(in FV)	(~0.01)	(~0.01)	(0.01)	(<0.01)
Non-v _µ Non-CCQE	433	164	77	48
(in FV)	(~0.01)	(0.02)	(<0.01)	(0.02)

In Summary

- Despite not being designed optimally for the task, the P0D can yield a useful addition to current T2K CC analyses
- MC study shows that with a few selection criteria, we get
 - Good signal selection purity
 - Good statistics
 - A vast improvement on accessible phase-space for P0D-based ν_{μ} CCQE interactions
- Next steps: open this analysis to current T2K data, and integrate into the ND analysis framework.

Backup Slides

The POD Subdetector

• P0Dules

- Basic "unit" of the P0D
- Composed of 2 layers of plastic scintillator bars: 1 oriented vertically (X-view) and 1 oriented horizontally (Y-view)
- Hits in each view are reconstructed together as
 3-D nodes
- 4 "Super-P0Dules"
 - 2 Ecals
 - 7 P0Dules separated by lead sheets
 - 2 Water Targets
 - 26 P0Dules separated by brass sheets and 25 layers of water bags
 - Water mass (~3,000kg) can be drained
 - 10,400 scintillator bars (33 mm x 17.5 mm)
 - Very few dead channels (~30)

- P0D-ECal composed of 6 compartments surrounding the P0D
 - Alternating layers of plastic scintillator to lead (~ 4:1)
 - No Z reconstruction! 2D objects only.
- SMRD: the recommissioned UA1 magnet surrounds the entire Off-Axis Near Detector
 - Extremely granulated due to physical constraints of the magnet
 - Sides:
 - 3 layers for first 5 yokes
 - 4 layers for 6th yoke
 - 6 layers for last 2 yokes
 - Top/Bottom
 - 3 layers the length of the detector

1 vs 2 track kinematics: longest track length reconstruction

1 vs 2 track kinematics: longest track momentum reconstruction

1 vs 2 track kinematics: longest track angle reconstruction Theta: 2Trk 1000 Theta ΙI 3000 800 2500 Contained 600 I 2000 sample 400 1500 1000 200 500 2.5 1.5 0.5 1.5 2.5 2 Angle (radians) Theta Theta: 2Trk II, 1000 3000 I I I 800 2500 "Folded" 2000 600 1500 400 1000 200 500 0 0.5 1.5 2.5 3 Angle (radians) 1 0.5 1.5 2.5 Angle (radians)

1 vs 2 track kinematics: longest track angle reconstruction Theta: 2Trk 300 Theta 900 250 800 ΙI 200 700 Exiting 600 150 sample 500 400 100 300 200 50 100 I day a character for the 0 1.5 2.5 0.5 1.5 2.5 Angle (radians) Theta Theta: 2Trk 300 900 800 250 700 "Folded" 600 200 500 150 400 300 100 200 50 100 0 0 0.5 1.5 2.5 3 1 0.5 1.5 з Angle (radians) Angle (radians)

15 August 2013

DPF Santa Cruz

Vertex Reconstruction

Vertex Reconstruction

