

Update of the like-sign dimuon charge asymmetry from the DØ experiment

Peter H. Garbincius Fermilab for the DØ Collaboration DPF, Santa Cruz, CA, August 16, 2013

Mystery & Motivation

- DØ previously published 3 measurements of the like-sign dimuon charge asymmetry at 1 fb⁻¹, 6.1 fb⁻¹, & 9 fb⁻¹, each observing
 A_{cp} ≠ SM prediction at ~ 1.7 3.9 σ significance
- This is one of only a few inconsistencies with SM
- Repeating with full 10.4 fb⁻¹ Run II data sample, improved background subtraction, methodology
- Is this observation real?
- Is our understanding of SM complete?
- Is there something else going on besides the SM?

CP violation in mixing $B^0 \leftrightarrow \overline{B^0}$ and $B_s^0 \leftrightarrow \overline{B_s^0}$

- $pp \rightarrow bb \dots etc.$ some examples
 - $b \rightarrow B^{\scriptscriptstyle -} \rightarrow \mu^{\scriptscriptstyle -} X \qquad \text{``right-sign } \mu''$
 - $\overline{b} \rightarrow \overline{B}^{0} \rightarrow B^{0} \rightarrow \mu^{-} X$ "wrong-sign μ "

or

 $\overline{b} \rightarrow B^+ \rightarrow \mu^+ X$ "right-sign μ " $b \rightarrow B^0 \rightarrow \overline{B^0} \rightarrow \mu^+ X$ "wrong-sign μ " also sequential decays, such as $b \rightarrow c \rightarrow \mu^+$ are another source of "wrong-sign μ " generic % of b $\rightarrow \mu$ <u>Pythia simulation</u> b $\longrightarrow \mu^{-}$ 73% b $\rightarrow \overline{b} \rightarrow \mu^{+}$ 11% b $\rightarrow c \rightarrow \mu^{+}$ 16%

SM Assumption

- (prior) only source of charge asymmetry for like-sign dimuons is CP violation in mixing for All IP1,IP2: A_{CP}^{mix}(SM) = (-0.008±0.001)%
- however, (recently) G. Borissov & B. Hoeneisen Phys. Rev. D 87, 074020 (2013) added CP violation in interference between mixed and non-mixed final states, such as

$$b \rightarrow B^{0} \longrightarrow D^{-} D^{+} (\rightarrow \mu^{+} \text{ "wrong sign"})$$

 $\overline{B^{0}} \qquad CP-even state$

This interference doesn't contribute to a_{CP} for single muons since D⁺ $\rightarrow \mu^+$ and D⁻ $\rightarrow \mu^-$ balance • for scale, for All(IP1,IP2) bin:

$$\begin{split} A_{\text{CP}}^{\text{interference}}(\text{SM}) &= (-0.035 \pm 0.008)\% \simeq 4 * A_{\text{CP}}^{\text{mixing}}(\text{SM}) \\ A_{\text{CP}}^{\text{mixing}}(\text{SM}) &= (-0.008 \pm 0.001)\% \\ A_{\text{CP}}(\text{SM}) &= A_{\text{CP}}^{\text{mixing}}(\text{SM}) + A_{\text{CP}}^{\text{interference}}(\text{SM}) = (-0.043 \pm 0.010)\% \\ A_{\text{CP}}(\text{DØ} \text{ measured with 9 fb}^{-1}) &= (-0.276 \pm 0.092)\% \\ &\quad \text{combined stat + syst uncertainty} \end{split}$$

- $A_{CP}^{interference}$ is linearly depended on $\Delta\Gamma_d/\Gamma_d$ so this gives possibility of *measuring* $\Delta\Gamma_d/\Gamma_d$ $\Delta\Gamma_d/\Gamma_d$: World Avg. = (1.5 ± 1.8)% SM = (0.42 ± 0.08)% anticipate DØ can measure $\Delta\Gamma_d/\Gamma_d$ to $\approx \pm 1\%$
- similar contribution of ΔΓ_s/Γ_s is much smaller and is already determined well (see HFAG-2012)

Measurement Method

Use both:

single inclusive muons (denoted by lower case) and like-sign dimuons (upper case)

Do **not** expect to see charge asymmetries for single inclusive muons

=> serves as closure or consistency check that we are

not generating false asymmetries

Charge Asymmetries

RAW observed asymmetries (in each data bin):

$$a \equiv \underline{n^+ - n^-}$$
 $A \equiv \underline{N^{++} - N^{--}}$
 $n^+ + n^ N^{++} + N^{--}$

Residual (background subtracted) asymmetries $a_{CP} \equiv a - a_{bkg}$ $A_{CP} \equiv A - A_{bkg}$

 a_{CP} and A_{CP} are normalized to all muons

sample: 2.2 x $10^9 \mu^{\pm}$; 2.2 x $10^7 \mu^{+}\mu^{-}$; 6.2 x $10^6 \mu^{\pm}\mu^{\pm}$

$$a_{CP} = a - a_{bkg}$$

$$a_{bkg} = a_{\mu} + f_{\kappa} a_{\kappa} + f_{\pi} a_{\pi} + f_{p} a_{p}$$

$$dominant \quad f_{\kappa} a_{\kappa} \approx +0.625\%, a_{\mu} \approx -0.288\%$$

 $\begin{array}{l} f_{K} = \mbox{fraction of charged K in } \mu \mbox{ sample, measured from} \\ K^{*0} \rightarrow \pi^{-} \mbox{ K}^{+} (\rightarrow \mu^{+}) \mbox{ and } K^{*+} \rightarrow \pi^{+} \mbox{ K}_{s}^{0} (\rightarrow \pi^{+} \ \pi^{-}) \\ \mbox{ and convert } f_{\kappa^{*0}} + f_{\kappa^{*+}} \rightarrow f_{\kappa^{\pm}} \mbox{ by isospin invariance} \end{array}$

 a_{K} asymmetry due to $\sigma_{\text{inelastic}}(K^{-}) > \sigma_{\text{inelastic}}(K^{+})$ is measured with $K^{*0} \rightarrow \pi^{-} K^{+} (\rightarrow \mu^{+} \nu) \& \text{ c.c. and } \phi \rightarrow K^{+} K^{-} (\text{with } K^{\pm} \rightarrow \mu^{\pm} \nu)$

a_{μ} = muon detector charge asymmetry measured with $J/\psi \rightarrow \mu^{+} \mu^{-}$ central tracking only, no μ trigger

new check: f_κ and f_π are cross-checked using tracks measured in both central and local muon trackers, differences are included in systematic uncertainties

evolution of this DØ measurement

This new full 10.4 fb⁻¹ analysis is still in collaboration review and is *not ready for public release* yet

So I can only give a status report,

view of checks with single inclusive muons, and indication of expected sensitivities!

$\int Ldt$	asymmetry A_{CP}		(DØ), Phys.Rev. D
1.0 fb ⁻¹	$(-0.28 \pm 0.13 \pm 0.09)\%$	1.7σ *	74 , 092001 (2006)
6.1 fb ⁻¹	$(-0.252 \pm 0.088 \pm 0.092)\%$	3.2σ *	82 , 032001 (2010)
9.0 fb ⁻¹	$(-0.276 \pm 0.067 \pm 0.063)\%$	3.9σ *	84 , 052007 (2011)
$10.4 \ {\rm fb}^{-1}$	$(? \pm 0.064 \pm 0.055)\%$	$?\sigma$ &	# (2013)
Analysis has changed significantly over this evolutionimproved* Discrepancy with $A_{CP}^{mix}(SM)$ only.systematic& Discrepancy with $A_{CP}^{mix}(SM)$ and $A_{CP}^{int}(SM)$.uncertainties			
DØ like-sign dimuon charge asymmetry - Garbincius - DPF - Santa Cruz - August 2013 10			

Muon Requirements

- Standard DØ single and multi-muon triggers
- Slightly tighter DØ tracking & quality requirements
- Require p_T > 4.2 GeV or |p_z| > 5.2 GeV

to ensure track penetrates through muon toroids

- $p_T \ge 1.5 \text{ GeV}$ and $p_T \le 25 \text{ GeV}$ to suppress μ from W[±] & Z⁰
- $M_{\mu\mu} > 2.8 \text{ GeV}$ to avoid 2 μ from same b $\rightarrow \mu^- v c (\rightarrow \mu^+)$
- 9 Bins for each muon:

0 <u><</u> |η|<u><</u> 0.7, p_T < 5.6, 5.7-7, 7-25 GeV 0.7 <u><</u> |η|<u><</u> 1.2, p_T < 5.6, 5.6-25 GeV 1.2 <u><</u> |η|<u><</u> 2.2, p_T < 3.5, 3.5-4.2, 4.2-5.6, 5.6-25 GeV

• 3 (transverse) I.P. bins: 0-50, 50-120, 120-3000 μm

 μ from b decays are predominantly at large I.P.

 $\mu\,$ from K and $\pi\,$ decays are predominantly at small I.P.

closure test for single muons expect a – a_{bkg} = 0

bkg mostly $K \rightarrow \mu \quad a_{bkg} \approx a_{K} f_{K}$ IP < 50 μm

These asymmetries are a linear combo of semi-leptonic decay asymmetries & $\Delta\Gamma_d/\Gamma_d$

 $a_{CP}^{b}(bins) = c_{d}(bins) \mathbf{a}_{sl}^{d} + c_{s}(bins) \mathbf{a}_{sl}^{s}$ $A_{CP}^{b}(bins) = C_{d}(bins) \mathbf{a}_{sl}^{d} + C_{s}(bins) \mathbf{a}_{sl}^{s} + C_{\delta}(bins) \Delta \Gamma_{d}/\Gamma_{d}$

DØ also measured these semi-leptonic asymmetries a_{sl}^{d} in $B^{0} \rightarrow D^{-} \mu^{+} X$ and $B^{0} \rightarrow D^{*-} \mu^{+} X \& c.c.$ decays Phys. Rev. D **86**, 072009 (2012) also measured by b-factories a_{sl}^{s} in $B_{s}^{0} \rightarrow D_{s}^{-} \mu^{+} X \& c.c.$ decays Phys. Rev. Lett. **110**, 011801 (2013) see Avdhesh Chandra's DPF presentation #235 - yesterday

indicating prior DØ measurement of

$$a_{sl}^{d} = (0.68 \pm 0.47)\%$$

and
 $a_{sl}^{s} = (-1.12 \pm 0.76)\%$

When? -> Soon!

Remaining Questions:

- Is it possible that the entire like-sign dimuon charge asymmetry is due to large ΔΓ_d/Γ_d?
- Are there still missing SM contributions to A_{CP}?
- Is the DØ observation that A_{CP} ≠ SM prediction real? Need checking by other experiments.

Thank you,

Peter

and *many thanks* to:

Guennadi Borissov, Lancaster University Bruce Hoeneisen, Univ. San Francisco de Quito

Why study this asymmetry at DØ?

- Charge Symmetric pp initial state
 @ sqrt(s) = 1.96 TeV
- Excellent μ id massive U-LAr calorimeter and magnetized iron muon toroid spectrometer – minimize hadronic punch through – remeasure & verify muon trajectory
- Flip polarities of solenoid and toroid magnets

 cancels many acceptance systematic effects

Charge Asymmetries

RAW observed asymmetries (in each data bin):

$$a \equiv \frac{n^{+} - n^{-}}{n^{+} + n^{-}}$$
 $A \equiv \frac{N^{++} - N^{--}}{N^{++} + N^{--}}$

Residual (background subtracted) asymmetries $a_{CP} \equiv a - a_{bkg}$ $A_{CP} \equiv A - A_{bkg}$

 a_{CP} and A_{CP} are normalized to all muons

prompt $b \rightarrow \mu \& c \rightarrow \mu$, which are included in a_{CP} and A_{CP} are considered "short" decays (within the beam pipe). $K \rightarrow \mu$ and $\pi \rightarrow \mu$ decays within the central tracking volume are also treated as "short" decays since they have not had an appreciable chance to interact in matter before decaying and therefore are not a source of instrumental a_{bkg} charge asymmetry due to $\sigma_{inelastic}(h^{-}) > \sigma_{inelastic}(h^{+})$. The $K \rightarrow \mu$ and $\pi \rightarrow \mu$ decays have small I.P. $b \rightarrow \mu$ and $c \rightarrow \mu$ have larger I.P.

regularly flip polarities of toroid magnet & solenoid magnet to reduce detector asymmetries

DØ like-sign dimuon charge asymmetry -

Garbincius - DPF - Santa Cruz - August 2013

FIG. 1: Definition of the $(p_T, |\eta|)$ bins. Global kinematic selections are $1.5 < p_T < 25$ GeV, $(p_T > 4.2$ GeV or $|p_z| > 5.4$ GeV), and $|\eta| < 2.2$.

IP of other muon when one muon is in IP=1 bin, IP=2 bin, and IP=3 bin. Common normalization at lowest IP.

23

analysis improvements

- Use only "good" runs
- Increased track quality requirements #hits SMT $\ge 2 \rightarrow \ge 3$
- New Monte Carlo simulation for $bb \rightarrow \mu^+\mu^- X$ (without prior $E_{tot} > 20$ GeV cut) to calculate fraction of oscillated B⁰ and $B_s^0 = C_b$ change by (+11±12)%
- Calculate K^{*0} reconstruction efficiency individually for each IP and (p_τ, |η|) bins
- Alternative cross-check of background fraction using locally measured track parameters in µ detector for All IP agrees to within (-10±4)% → incl. in syst. uncert.

