SPIN CORRELATIONS OF TOP QUARK PAIR @ DZERO

SungWoo YOUN

Fermi National Accelerator Laboratory

2013 Meeting of the APS Division of Particles and Fields *August 13-17, 2013 University of California, Santa Cruz*

spin correlati

Introduction

- Spin correlation in quark-pair production
 - Individual quarks are un-polarized, but spins of quark-pair are correlated
 - Not a special property of top quark!
- Top quark lifetime is short
 - Decay (~10⁻²⁵ s) << hadronization (1/\(\Lambda_{QCD}\)~10⁻²⁴ s)
 - Spin information is transferred to decay products
 - Angular distribution

Motivation

- Precision test of SM
 - Confirms that top quark is a spin $\frac{1}{2}$ SM particle
 - · Sets upper limits on lifetime, thus lower bound on decay width
- Study of "bare" quarks free from long distance QCD effects
- Probe of physics beyond SM
 - Neutral Higgs, stop, Z' in production; Charged Higgs, b' in decay

0000

00000

"alliets" 46%

τ+jets 15%

+jets 15%

"lepton+jets"

Top Pair Production and Decay Production via strong interaction q g 00000 g q Tevatron (~85%) LHC (~85%) $\sigma_{ttbar} = 7.2 \text{ pb} @ m_t = 173 \text{ GeV}$ **Top Pair Branching Fractions** Phys. Rev. Lett. 110, 252004 Decay via weak interaction l⁺, q ν, **q**' W^+ b In SM, BR(t \rightarrow Wb) = ~100% *e*+jets 15% "dileptons"

- Angular distribution of the decay product
 - Top quark decays through V-A weak coupling

 $\frac{1}{\Gamma} \frac{d\Gamma}{\cos\theta} = \frac{1}{2} (1 \pm \alpha \cos\theta) \quad \pm : \text{ right-handed / left-handed}$

- θ: angle of the decay product w.r.t. the spin-quantization axis in the top rest frame
- α: analyzing power
- Top pair spin correlation connects the helicity angles on both sides of decay

$$\frac{1}{\sigma} \frac{d^2 \sigma}{\cos \theta_1 d \cos \theta_2} = \frac{1}{4} \left(1 + C \cos \theta_1 \cos \theta_2 \right)$$

- C: correlation strength
 - Degree of spin correlation
 - $C = A\alpha_1 \alpha_2$

Spin Correlation Strength

- Correlation coefficient A
 - Fractional difference between like and unlike spin alignments

$$A = \frac{N(\uparrow\uparrow) + N(\uparrow\uparrow) - N(\uparrow\downarrow) - N(\downarrow\uparrow)}{N(\uparrow\uparrow) + N(\uparrow\uparrow) + N(\uparrow\downarrow) + N(\downarrow\uparrow)}$$

- Theoretical dependencies cancels to a large extent
 - PDF, factorization, renormalization scales, and α_{s}
- Experimental uncertainty (luminosity) cancels
- Analyzing power of decay product, α
 - Amount of spin information which a daughter particle carries from the parent top
 - Charged leptons (dilepton) and down-type quarks (I+jets)

	l [±]	d, s	u, c	b	W [±]
α (NLO)	1.00	0.93	-0.31	-0.39	0.39

g 2000

 \overline{q}

(b) β

 $\rightarrow 1$

00000

Strength Dependency I

- Production mode
 - qq annihilation (J=1 state): mainly likely aligned ($t_L t_R$ and $t_R t_L$)
 - gg fusion (J=0 state): unlikely aligned (t_Lt_L and t_Rt_R)

- Collision energy
 - Threshold for tt production
 - spin(t) || spin (q)
 - Large top quark momentum
 - $t_R t_L$ dominant for $\theta < 90$

q

(a) $\beta \rightarrow 0$

Strength Dependency II

- Spin quantization axis
 - Helicity basis
 - Top quark direction in tt rest frame
 - Sensible for LHC
 - Beam basis
 - Beam line
 - Optimal for tt produced at threshold
 - Off-diagonal basis
 - Energy dependent
 - Optimal for tt production from qq annihilation

Correlation Strength (NLO) Nucl. Phys. B 690,81 (2004)

NLO	Tevatron	LHC (7 TeV)	LHC (14 TeV)
Helicity	-0.352	0.270	0.347
Beam	0.777	0.053	-0.051
Off-diagonal	0.782	0.034	-0.076

CDF, L=4.3 fb⁻

H

0

 $\cos \theta_1 \cos \theta_2$

 $C(beam) = 0.10 \pm 0.45$

tī SM spin corr. PRL 108, 032004 tī no spin corr.

0.5

- Data

tt SM spin corr.

tt no spin corr.

Backgrounds

0.5

DØ, L=5.3 fb⁻¹

I+jet

0.55

0.6

120 DØ L=5.4 fb⁻¹

dilepton

-0.5

measured tt

0.45

Other

W+iets

Multijet

0.4

– Data

80

60

40

20

0

-1

240

220

Measurements at Tevatron

Angular

OH Model

Measurements at LHC

Tevatron

- Fermilab, IL
- Unique p-pbar collider
 - √s=1.96 TeV
 - 396 ns bunch crossing
- Two experiments
 - D0 and CDF
- RunII operation 2001 ~ 2011

- Delivered 11.9 fb⁻¹
 - Recorded 10.7 fb⁻¹
 - Analysis used 9.7 fb⁻¹
- ~100,000 top quark events
 - σ(m_t=173 GeV) ~ 7.2 pb

5

-5

-10

D0 Detector

Tracking system

-5

- Silicon Microstrip Tracker (SMT)
 - Upgraded with L0 in 2006
- Central Fiber Tracker (CFT)

- Solenoid
 - 2 T
- Calorimetry

0

5

10

Uranium / liquid-argon

Muon system

- 3 layers of scintillators / drift chambers
- Toroid (1.8 T)

lepton+jets Final States

- W⁺→Iv (I=e,µ) / W⁻→qq'
- Event characteristics
 - One isolated lepton
 - ≥ 4 jets (2 b quark + 2 light quark)
 - Momentum imbalance

Advantages

- (Relatively) clear events lepton
- Sizable statistics (BR > 30%)
 - Including leptonic tau decays
- Top quarks can be fully reconstructed with minimal assumption
- Large analyzing power
 - α(l) =1.00, α(d,s)=0.93

Samples

Data

• Full Tevatron dataset (9.7 fb⁻¹)

Signal

- MC@NLO+HERWIG (mterministic mterministic mterministic
- Spin correlation vs. no spin correlation

Background

- Dilepton, signle top (tb, tqb)
- Diboson (WZ,WW,ZZ)
- W+jets, Z+jets
- Multijet data driven

Event Selection

- Event selection
 - Lepton
 - One isolated lepton with $p_T > 20$ GeV, $|\eta(e)| < 1.1$, $|\eta(\mu)| < 2.1$
 - Jets
 - \geq 4 jets with p_T > 20 GeV (leading jet p_T > 40 GeV), $|\eta|$ < 2.5
 - ≥ 2 jets tagged by MVA b-tagger
 - MET > 20 GeV

Sample		e+jets	µ+jets	I+jets	
Signal		647.9 ± 1.5	506.4 ± 1.2	1154.3 ± 1.9	
Background	W+jets	55.8 ± 1.4	63.1 ± 1.5	118.9 ± 2.1	
	Multijet	33.1 ± 2.5	4.1 ± 0.4	37.1 ± 2.5	
	Others	38.6 ± 0.5	29.1 ± 0.4	67.8 ± 0.6	
	Total	127.5 ± 2.9	96.3 ± 1.6	647.9 ± 3.2	
Expected		775.4 ± 3.3	602.8 ± 2.2	1378.2 ± 3.9	
Observed		820	731	1551	

- Matrix Element Method (next slide)
- Jet-parton assignment
 - Only 4 jets considered
 - Two b-tagged jets w/ highest MVA => b-jets
 - Two additional jets w/ highest p_T among the others => light jets
 - 4 permutations per event
- Binned maximum likelihood fit
 - Returns fraction of spin correlation (f_{meas})
- Sample splitting
 - lepton flavor / jet multiplicity / m_{jj} (|m_{jj} m_W|, m_W=80.4 GeV)
 - Simultaneous fit over these 8 subsamples enhances sensitivity
- Correlation strength C
 - $C_{meas} = f_{meas} \times C_{SM}$ ($C_{SM} = 0.777^{+0.027}_{-0.042}$)
 - Assume ME calculation fully reflects spins in ttbar production and decay

Matrix Element Method

 Probability of each event being signal for a given hypothesis (H) of interest

Optimal use of kinematic information => improves sensitivity by ~30%

Discriminant and Templates

- Signal probabilities
 - Two probabilities per event are calculated by ME under two hypotheses
 - H=0 (spin uncorrelated) vs. H=1 (spin correlated as predicted in SM)
- Discriminant R

$$R = \frac{P_{\text{sgn}}(x; H = 1)}{P_{\text{sgn}}(x; H = 0) + P_{\text{sgn}}(x; H = 1)}$$

Templates

- Two templates (H=0 and H=1) are built from R distributions from signal and background
 - Background distribution is commonly used for both templates
- Combined templates are constructed from 8 subsamples

Combined Templates

Template (Runll)

Binned Maximum Likelihood Fit

• For bin *i*

$$n^{i} = \sigma_{norm} \cdot \left[f_{H=1} \times n_{H=1}^{i} + (1 - f_{H=1}) \times n_{H=0}^{i} \right] + n_{bkg}^{i}$$

- *nⁱ* : # of events in bin *i*
- *f*_{H=1}: fraction of spin correlation (*no constraint => Feldman-Cousins*)
- σ_{norm} : $\sigma_{ttbar} = \sigma_{norm} \times 7.48 \text{ pb}$
- Likelihood function

$$L = \prod_{i}^{N} P(m^{i}, n^{i})$$

- *P(m,n)* : Poisson probability to observe *m* events when *n* events are expected
- *N*: # of bins

LHF with systematics

$$L = \prod_{i}^{N} P(m^{i}, n^{i}) \prod_{k}^{K} G(v_{k}; 0; SD_{k,i})$$

- $G(v_k; 0, SD_{k,i})$: Gaussian PDF with zero mean and 1 SD width for systematic source k
 - v_k: nuisance parameter
- *K*: # of systematic sources

Systematic Uncertainties

Туре	Source				
	Lepton ID				
	Trigger requirement				
Normalization	Background normalization				
	Multijet background				
	Integrated luminosity				
	Jet energy resolution				
	Jet ID				
	Jet energy scale				
	Flavor dependent correction				
Shape	b-tagging / fake rate				
changing	Taggability				
	PDF				
	Top quark mass				
	Signal modeling				
	Template MC statistics				

Ensemble Test

- Calibrate fitter and estimate uncertainty
- An ensemble consists of events randomly selected according to sample composition
- 5 different signal composition between H=1 and H=0
 f_{H=1}:f_{H=0} = 0.0:1.0 / 0.25:0.75 / 0.5:05 / 0.75:0.25 / 1.0:0.0
- 1000 pseudo-experiments for each mixing fraction point
- Pull distribution
 - $(f_{obs} \langle f_{obs} \rangle) / \sigma_{obs}$ per pseudo-experiment
 - Non-bias sampling generates a Gaussian with zero mean and unity width

Ensemble Test (Statistics only)

Results (Expected)

• Based on ensemble test (@ f_{true} =1.0) $f_{meas} = x.xx \pm 0.28 \text{ (stat.)} \pm x.xx \text{ (syst.)}$ $\sigma_{ttbar} = x.xx \pm 0.26 \text{ (stat.)} \pm x.xx \text{ (syst.)}$

$$C_{meas} = x.xx \pm 0.22$$
 (stat.) $\pm x.xx$ (syst.)

- "x.xx" will be filled soon
- Previous measurement (5.4 fb⁻¹)
 - $f_{meas} = 0.85 \pm 0.39 \text{ (stat.)} \pm 0.21 \text{ (syst.)}$ $(1.15 \pm 0.43 \text{ (nuisance)})$ $\sigma_{ttbar} = 8.31 \pm 0.32 \text{ (stat.)} \pm 0.86 \text{ (syst.)}$ $(8.30 \pm 0.87 \text{ (nuisance)})$
- Statistically dominated

Feldman Cousins C.L.

- General approach to (classical) statistical analyses with small signals or physical boundary
 - Construction of confidence belts using frequentist method
 - Restrict measurements into physical region
- Original (Neyman) way has some issues
 - Flip-flopping (interval or limit?) based on data
 - Under(over)coverage => serious flaw (too conservative)
- Ordering principle
 - Ranking strategy based on likelihood ratios

 $R = P(x|\mu) / P(x|\mu_{best})$

 μ : parameter of interest, *x*: measured value of μ

- Natural transition from two-sided intervals to one-sided limits (unified approach)
- Appropriate coverage

Confidence Limit (Expected)

Exclusion of $f_{true} < 0.21$ for $f_{meas} = 1.0 @ 3 S.D.$ (Statistics only)

Summary

- Spin correlation measurement is a legacy at Tevatron and complementary to LHC
- Utilize Full RunII data (9.7 fb⁻¹) to measure the fraction in I+jets final states
- Results (expected & statistics only)

 $f_{meas} = x.xx \pm 0.28 \text{ (stat.)} \pm x.xx \text{ (syst.)}$ $\sigma_{ttbar} = x.xx \pm 0.26 \text{ (stat.)} \pm x.xx \text{ (syst.)}$ $C_{meas} = x.xx \pm 0.22 \text{ (stat.)} \pm x.xx \text{ (syst.)}$

- Exclusion of f_{H=1} < 0.21 @ 3 SD
- Statistically dominated
- Prospects
 - Expect 3~4 SD with single channel
 - Combination with dilepton channel expects ~5 SD

- Capability of full reconstruction with minimal assumption
 - Invariance mass of two non-tagged jets should be close to W mass
- Two subsamples
 - $|M(jj)| < \Delta m$ and $|M(jj)| > \Delta m$
- Scanning over Δm for minimum sensitivity (combined) from ensemble tests
 dijet_m (RunII, ljets)
 - ∆m = 25 GeV
- Improves sensitivity

Separation Power

$$S.P. = \frac{\left|\mu_{H=1} - \mu_{H=0}\right|}{\sqrt{\sigma_{H=1}^2 + \sigma_{H=0}^2}}$$

	e+jets			µ+jets				
jets	=	4	>4		=4		>4	
m _{jj} -80.4	<25	>25	<25	>25	<25	>25	<25	>25
Signal only	0.074	0.033	0.042	0.023	0.081	0.032	0.071	0.029
Signal+Bkg	0.065	0.025	0.039	0.021	0.072	0.023	0.066	0.025

Neyman vs. F-C

 $P(x \in [x_1, x_2] | \mu) = 0.9$

Ensemble Distributions

1000

1.018

0.02191

93.28 / 57

0.001728

