N_{eff} from Decaying Matter

Jordi Salvadó Serra

Wisconsin IceCube Particle Astrophysics Center (WIPAC) and Department of Physics University of Wisconsin

DPF 2013

arXiv:1212.1472 M. C. Gonzalez-Garcia, V. Niro, J.S.

Content

- Cosmological Observations
- Theory of Cosmology
- $I N_{eff} in \Lambda CDM Cosmology$
- Is N_{eff} bigger than zero?
- **Does** $N_e f f > 0$ imply new light DOF?
- Cosmology with decaying matter
- Cosmological parameters
- Data Analysis

WMAP and SPT $z \approx 1100$ $\frac{\delta T}{T} \approx 10^{-5}$

$$\left\langle \frac{\delta T}{\bar{T}}(\hat{n}) \frac{\delta T}{\bar{T}}(\hat{n}') \right\rangle = \sum_{l=0}^{\infty} \frac{2l+1}{4\pi} C_l P_l(\hat{n} \cdot \hat{n}')$$

SDSS $z \approx 0.1$ $\frac{\delta \rho}{\rho}$ is small only at large scales.

$$P_{gal}(k,z) = \langle |rac{\delta
ho(k_i,z)}{
ho}|^2
angle$$

 $\delta \rho(k_i, z)$ is the F.T. of the density fluctuations.

- **HST** \rightarrow low-z supernovae, HST, A. G. Riess *et al.* 0905.0695
- SN1a \rightarrow High-z supernovae, M. Hicken *et al.*, 0901.4804
- BBN \rightarrow primordial abundances for the elements are affected by the expansion rate of the Universe at the BBN time (Mangano *et al.* 1103.1261).

CosmoTh: Geometry of the Universe

The metric for a general homogeneous and isotropic Universe is,

$$ds^{2} = dt^{2} - a^{2}(t) \left(\frac{dr^{2}}{1 - Kr^{2}} + r^{2}d\Omega^{2} \right) ,$$

all the dynamics is in the function a(t), a(t) and K are determined by the content of the Universe

To take into account the small deviations we need to go beyond the homogeneous and isotropic solution. F.e for scalar perturbations

$$ds^{2} = (1 - 2\psi(t, x))dt^{2} - (1 + 2\phi(t, x))a^{2}(t)\left(\frac{dr^{2}}{1 - Kr^{2}} + r^{2}d\Omega^{2}\right).$$

CosmoTh: Λ **CDM** + N_{eff} **Model**

Туре	0-order	1-order
Matter	$ ho_{cdm}(t), \ ho_b(t)$	$\delta \rho_{cdm}(t,x), \ \delta \rho_b(t,x)$
Radiation	$ ho_{\gamma}(t), \ ho_{N_{rel}}(t)$	$\delta ho_{\gamma}(t,x),\;\delta ho_{ u}(t,x)$
Dark energy	$ ho_\Lambda(t),\;\omega$	

- Matter and radiation evolution is determined by Boltzmann equations up to first order in $\delta \rho_i / \rho_i$.
- Geometry is determined by Einstein equations $H(z) = \sqrt{\sum_i \rho_i(z)}$
- Both sets of eqs are coupled

The BAO oscillations in the δ_b have an effect on the full matter PS.

We parametrize the reionization by unknown parameter τ SW and ISW effects are included in the Boltzmann codes.

The background evolution enters in all the 1-order equations, therefore the perturbations contain information about all the parameters.

$\Lambda CDM + N_{eff}$ Parameters

- 0-order(homogeneous and isotropic), $(\Omega_i \equiv \rho_i / \rho_{crit}, \ \rho_{crit} = \frac{3H^2}{8\pi G})$
 - Matter $\rightarrow \Omega_m \rightarrow \Omega_{cdm}, \ \Omega_b$
 - Radiation $\rightarrow \Omega_r \rightarrow \Omega_\gamma$ (fixed by T_{CMB}), N_{rel}
 - Reionization optical depth $\rightarrow \tau$
 - Hubble parameter today $\rightarrow H_0 \rightarrow \Omega_\Lambda$
- I-order, initial conditions for $\delta \rho / \rho$ are determined by the primordial power spectrum from inflation,
 - Primordial spectrum amplitude $\rightarrow A_s$
 - Spectral index($n_s = 1 \Rightarrow$ flat spectra) $\rightarrow n_s$

$$P(k) = \mathbf{A}_{s} \frac{k^{1-n_{s}}}{k^{3}} \quad \rightarrow \quad C_{l}, P_{gal}(k)$$

Is ΔN_{eff} bigger than zero?

- $\Lambda CDM + N_{eff}$ with WMAP9 + spt + act $N_{eff} = 3.89 \pm 0.67(68\% CL)$.
- $\Lambda \text{CDM} + m_{\nu} + N_{eff}$ with Planck + WP +spt + act $\sum m_{\nu} < 0.6eV \ N_{eff} = 3.29^{+0.67}_{-0.64}(95\% CL)$

Planck 2013 results. XVI

Does $N_{eff} > 0$ **imply new light DOF?**

IF (Thermal eq.) Then

$$T, N_{dof} \to \rho_{rad}$$

Else

$$\rho_{rad} = \rho_{th} + \rho_{nonth} = \frac{N_{dof}F(T)}{F(T)} + \rho_{nonth} = \frac{N_{eff}F(T)}{F(T)}$$

Only near to the equilibrium N_{eff} and N_{dof} are similar.
 Can the extra radiation be explained by non thermal contribution in to non standard neutrinos?
 arXiv:1212.1472

 We study the possibility of include new cold matter that decays in to standard neutrinos to explain the extra radiation

Decaying Matter

In order to include the new decaying matter we should extend the matter content.

Type0-order1-orderMatter $\rho_{cdm}(t), \rho_b(t), \rho_{dec}(t)$ $\delta \rho_{cdm}(t, x), \delta \rho_b(t, x)$ Radiation $\rho_{\gamma}(t), \rho_{\nu}(t)$ $\delta \rho_{\gamma}(t, x), \delta \rho_{\nu}(t, x)$ Dark energy $\rho_{\Lambda}(t), \omega$

0-order Boltzmann equations:

$$\dot{\rho}_{dec} = -3aH\rho_{dec} - a\Gamma_{dec}\,\rho_{dec}$$
$$\dot{\rho}_{\nu} = -4aH\rho_{\nu} + a\Gamma_{dec}\,\rho_{dec}$$

Decaying Matter Parameters

- 0-order(homogeneous and isotropic), $(\Omega_i \equiv \rho_i / \rho_{crit}, \ \rho_{crit} = \frac{3H^2}{8\pi G})$
 - Matter $\rightarrow \Omega_m \rightarrow \Omega_{cdm}, \ \Omega_b, \Omega_{dec}, \Gamma_{dec}$
 - Radiation $\rightarrow \Omega_r \rightarrow \Omega_\gamma$ (fixed by T_{CMB}), $N_{eff} = 3$
 - Reionization optical depth $\rightarrow \tau$
 - Hubble parameter today $\rightarrow H_0 \rightarrow \Omega_\Lambda$
- I-order, initial conditions for $\delta \rho / \rho$ are determined by the primordial power spectrum from inflation,
 - Primordial spectrum amplitude $\rightarrow A_s$
 - Spectral index($n_s = 1 \Rightarrow$ flat spectra) $\rightarrow n_s$

$$P(k) = A_s \frac{k^{1-n_s}}{k^3} \quad \to \quad C_l, P_{gal}(k)$$

Data Analysis

- HST → low-z supernovae, HST, A. G. Riess *et al.* 0905.0695
- SN1a \rightarrow High-z supernovae, M. Hicken *et al.*, 0901.4804
- BAO → BAO from SDSS & 2dFGRS, W. J. Percival *et al.*, 0907.1660
- CMB → WMAP, E. Komatsu, *et al.*,1001.4538
- CMB \rightarrow SPT, Keisler, R, *et al.*, 1105.3182
- **BBN** \rightarrow primordial abundances, Mangano *et al.* 1103.1261

We develop a code implementing a Markov Chain Monte Carlo (MCMC) algorithm for parameter sampling and to determine the posterior probability distribution for the cosmological parameters.

decM data analysis results

decM data analysis

	decM+BBN		$\Lambda \text{CDM} + N_{\text{eff}} + \text{BBN}$			
Parameter	best	1σ	95%	best	1σ	95%
H ₀ [km/s/Mpc]	72.6	$+1.5 \\ -1.4$	$+3.0 \\ -2.8$	73.0	$+1.5 \\ -1.5$	$+2.8 \\ -3.0$
$\Omega_b h^2 \times 100$	2.254	$+0.034 \\ -0.037$	$+0.069 \\ -0.068$	2.258	$+0.032 \\ -0.037$	$+0.065 \\ -0.070$
$\Omega_c h^2$	0.125	$+0.005 \\ -0.005$	$+0.012 \\ -0.010$	0.127	$+0.006 \\ -0.006$	$^{+0.011}_{-0.012}$
$\log(ho_{dec}/ ho_{\gamma})$ at $t=10^{-4}~{ m s}$	-4.61	$^{+0.61}_{-0.73}$	$+0.92 \\ -1.7$	_	_	-
n_s	0.973	$+0.009 \\ -0.009$	$+0.018 \\ -0.018$	0.975	$^{+0.010}_{-0.010}$	$^{+0.019}_{-0.019}$
au	0.084	$+0.013 \\ -0.015$	$+0.026 \\ -0.026$	0.083	$+0.013 \\ -0.013$	$^{+0.027}_{-0.024}$
$A_s \times 10^9$	2.452	$^{+0.082}_{-0.083}$	$+0.164 \\ -0.157$	2.449	$^{+0.075}_{-0.083}$	$^{+0.155}_{-0.159}$
$\log(au_{dec}/\mathrm{s})$	2.9	$^{+1.7}_{-1.0}$	$+3.7 \\ -1.5$	—	_	_
$\Delta N_{\mathrm{eff}}^{\mathrm{CMB}}$	0.50	$^{+0.30}_{-0.19}$	$^{+0.58}_{-0.42}$	0.70	$^{+0.25}_{-0.30}$	$^{+0.44}_{-0.59}$
$\Delta N_{\mathrm{eff}}^{\mathrm{BBN}}$	_	—	≤ 0.90	0.70	$^{+0.25}_{-0.30}$	$^{+0.44}_{-0.59}$

decM data analysis results

2D contour plots

In radiation dominated universe $\Delta N_{eff} \propto
ho_{dec} \sqrt{ au_{dec}}$

Jordi Salvado

Motivations for $N_{eff} > 0$

- Many extensions of the SM contain extra light particles, axions, light sterile neutrinos ...
- Sterile Neutrino Experimental Motivation:
 - LSND excess of $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ with $\Delta m^{2} \sim 1 eV^{2}$
 - MiniBoone $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance
 - Gallium Anomaly, SAGE and GALLEX event rates lower than expected, can be explained by ν_e disappearance with $\Delta m^2 \ge 1 eV^2$
 - New reactor flux calculation (Mueller et al., 1101.2663, P. Huber, 1106.0687) 3% higher, tension in short-baseline ($L \leq 100m$) experiments, can be explained by ν_e disappearance with oscillation with $\Delta m^2 \sim 1eV^2$.
- Work in progress: Sterile Neutrino Analysis in IceCube using IC-79 and IC-86 data

decM data analysis results

- The bump at $\Delta N_{eff}^{BBN} = 0$ can be understood by the prior.
- We use a flat prior in $\tilde{\Omega}_{dec}$ and Γ_{dec}

$$\mathcal{P}(\tilde{\Omega}_{\mathrm{dec}}, \Gamma_{\mathrm{dec}}) = cnt$$

• Using the approximate analytic solution in radiation dominated universe and $\mathcal{P}(\tilde{\Omega}_{dec}, \Gamma_{dec}) d\tilde{\Omega}_{dec} d\Gamma_{dec} = \tilde{\mathcal{P}}(N_{eff}, Z) dN_{eff} dZ$

 $ilde{\mathcal{P}}(N_{ ext{eff}},Z) \propto 1/N_{ ext{eff}}$

CosmoTh: Scales

N_{eff} in the CMB

- N_{eff} gives a contribution to the energy density therefore affects the expansion rate H at the CMB time.
- The CMB physics is determines by the length scales:

$$d_s(t_{CMB}) \propto 1/H$$
 $\lambda_d(t_{CMB}) \propto 1/\sqrt{H}$ $d_A(t_{CMB}) \propto 1/H$

The position of the peaks depends on:

 $\frac{d_s(t_{CMB})}{d_A(t_{CMB})}$

therefore is not affected by the expansion rate.

The damping effect ant high-l is determined by:

$$\frac{\lambda_d(t_{CMB})}{d_A(t_{CMB})} = \frac{1}{\sqrt{H}}$$

The effect on the CMB at high-I is affected by H and can give information about $N_e f f$

	ΛCDM + N_{eff}			
Parameter	best	1σ	95%	
H_0 [km/s/Mpc]	73.0	$+1.5 \\ -1.5$	$+2.8 \\ -3.0$	
$\Omega_b h^2 imes 100$	2.258	$+0.032 \\ -0.037$	$+0.065 \\ -0.070$	
$\Omega_c h^2$	0.127	$^{+0.006}_{-0.006}$	$^{+0.011}_{-0.012}$	
n_s	0.975	$^{+0.010}_{-0.010}$	$^{+0.019}_{-0.019}$	
au	0.083	$+0.013 \\ -0.013$	$+0.027 \\ -0.024$	
$A_s \times 10^9$	2.449	$+0.075 \\ -0.083$	$+0.155 \\ -0.159$	
$\Delta N_{ m eff}$	0.70	$^{+0.25}_{-0.30}$	$+0.44 \\ -0.59$	

BBN, N_{eff} < 4 at 95% C.L.(Mangano *et al.* 1103.1261)

- Without BBN $N_{eff} = 3.87 \pm 0.42$ (Joudaki, Shahab.
 1202.0005)
- Before SPT and without BBN in extended cosmological models $N_{eff} = 4.2^{+1.1}_{-0.61}$ (Gonzalez-Garcia, M.C, *et al.* 1006.3795)

N_{eff} in the CMB

Effect in the CMB of the extra relativistic radiation ΔN_{rel} in the Universe.

Bayesian Data Analysis

- For a given values of the theory parameters θ the probability of measuring a data sample \overline{d} is the likelihood function $\mathcal{L}(\overline{d}; \theta)$.
- In Bayesian Interpretation the probability is associated with the knowledge, therefore we can summarize our knowledge of the theoretical parameters θ as a probability distribution $p(\theta | \overline{d})$.
- Using the Bayesian theorem we can relate this probability with the likelihood:

$$p(\theta|\bar{d}) = \frac{\mathcal{L}(d|\theta)\pi(\theta)}{\sum_{\theta'} \mathcal{L}(\bar{d}|\theta')\pi(\theta')}$$

Decaying Matter

1-order Botzmann equations:

$$\begin{split} \dot{\delta}_{DM} &= -\frac{1}{2}\dot{h}, \\ \dot{\delta}_{R} &= -\frac{2}{3}\dot{h} - \frac{4}{3}\theta_{R} + a\Gamma_{dec}\frac{\rho_{dec}}{\rho_{R}}\left(\delta_{DM} - \delta_{R}\right), \\ \dot{\theta}_{R} &= k^{2}\left(\frac{1}{4}\delta_{R} - \sigma_{R}\right) - a\Gamma_{dec}\frac{\rho_{dec}}{\rho_{R}}\theta_{R}, \\ \dot{\sigma}_{R} &= \frac{1}{2}\left(\frac{8}{15}\theta_{R} - \frac{3}{5}kF_{3} + \frac{4}{15}\dot{h} + \frac{8}{5}\dot{\eta}\right) - a\Gamma_{dec}\frac{\rho_{dec}}{\rho_{R}}\sigma_{R}, \\ \dot{F}_{l} &= \frac{k}{2l+1}\left[lF_{l-1} - (l+1)F_{l+1}\right] - a\Gamma_{dec}\frac{\rho_{dec}}{\rho_{R}}F_{l}, \end{split}$$

From the matter power spectrum we use the scale associated with the Baryonic Acoustic Oscillations (BAO).