FLAVOR PHYSICS – THEORETICAL ISSUES^{1/15}

J. Rosner – DPF 2013, UC Santa Cruz – August 15, 2013

Masses and mixings of quarks and leptons – pattern? Status of mixings

Apparent suppression of new flavor-changing effects New measurements of CP violation in heavy quark decays

- Present and proposed measurements to advance that goal
 - Forthcoming g-2 measurements
 - Forthcoming $\mu \rightarrow e$ conversion and $\mu \rightarrow e\gamma$ searches
 - What do we expect to learn from electric dipole moments?
- The elephant in the room: Dark Matter
 - We know it exists (galaxies, clusters, structure, Bullet Cluster, ...) Five times as much of it as ordinary matter
 - Like trying to guess the structure of the periodic table knowing only Li, Be, and their relatives

QUARK MIXINGS

From CKMfitter (ICHEP 2012):

Hierarchical! Correlation with quark masses? $V_{us} \simeq \sqrt{m_d/m_s}$, $V_{cb} \simeq m_s/m_b$ noted long ago

Underlying dynamics?

Possibly sensitive to logarithms of quark masses Randall-Sundrum models: Position along fifth dimension Mixing could be related to proximity in fifth dimension

QUARK MASSES

Lines: Charge-changing weak transitions Black: O(1) Blue: 0.2 Red: 0.04 Green: < 0.01

LEPTON MIXINGS Fogli *et al.*, PR D **86**, 013012 (2012):

$$U_{PMNS} = \begin{bmatrix} 0.82 & 0.55 & 0.155e^{-i\delta} \\ -0.44 - 0.08e^{i\delta} & 0.65 - 0.05e^{i\delta} & 0.61 \\ 0.35 - 0.10e^{i\delta} & -0.52 - 0.07e^{i\delta} & 0.78 \end{bmatrix}$$

4/15

"Democratic" (aside from 13 element); not far from $\begin{bmatrix} 2/\sqrt{6} & 1/\sqrt{3} & 0\\ -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2}\\ 1/\sqrt{6} & -1/\sqrt{3} & 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 0.82 & 0.58 & 0\\ -0.41 & 0.58 & 0.71\\ 0.41 & -0.58 & 0.71 \end{bmatrix}$

With sign change of last row, "tribimaximal" mixing (columns are eigenvectors of matrix with all 1's)

LEPTONS VS. QUARKS

What's different about neutrinos? Seesaw mechanism?

Consider difference between U_{PMNS} and tribimaximal UAll elements are < O(0.1) in magnitude

Suggests one look for tribimaximal mixing as a first approximation [Babu + , PR D72, 115003; McKeen + , PR D76, 073014]

FLAVOR-CHANGE SUPPRESSION

Take a page from Glashow-Iliopoulos-Maiani mechanism Without the charm quark, neutral current had flavor-changing parts Introduction of charm (quark-lepton analogy) canceled FCNC Definite predictions for loop-induced FCNC, e.g., in $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Tree-level FCNC in many new physics (NP) scenarios "Minimal flavor violation" (arXiv:1202.0464) sidesteps the problem Otherwise must assume NP scale is very large (e.g., $> 10^5$ TeV) As A. Pais used to say: "Where's the joke?"

Loop-induced FCNC: can \neq SM but correlations exist $\Gamma(B_s \rightarrow \ell^+ \ell^-)/\Gamma(B_d \rightarrow \ell^+ \ell^-) = |V_{ts}/V_{td}|^2 \simeq 34$ SM: $\mathcal{B}(B_s \rightarrow \ell^+ \ell^-) = (3.7 \pm 0.4) \times 10^{-9}, \quad \mathcal{B}(B_d \rightarrow \ell^+ \ell^-) = (1.1 \pm 0.15) \times 10^{-10}$ CMS: $\mathcal{B}(B_s \rightarrow \ell^+ \ell^-) = (3.0^{+1.0}_{-0.9}) \times 10^{-9}, \quad \mathcal{B}(B_d \rightarrow \ell^+ \ell^-) = (3.5^{+2.1}_{-1.8}) \times 10^{-10}$ SM: $\mathcal{B}(K^+ \rightarrow \pi^+ \nu \bar{\nu}) \simeq 8.5 \times 10^{-11}, \quad \mathcal{B}(K_L \rightarrow \pi^0 \nu \bar{\nu}) \simeq 2.4 \times 10^{-11},$ Correlated in MFV scenario (Bob Bernstein's talk)

CPV IN HEAVY QUARK DECAYS

7/15

Are A_{CP} in $D^0 \rightarrow K^+K^-$, $D^0 \rightarrow \pi^+\pi^-$ anomalous? B. Bhattacharya, M. Gronau, JLR, PR D **87**, 074002 (2013), ... CDF, Belle, LHCb: possible fractional-% asymmetries Enhanced CPV $c \rightarrow u$ penguin \Rightarrow CPV in other SCS charm decays such as $D^0 \rightarrow \pi^0 \pi^0$, $D^+ \rightarrow \bar{K}^0 \pi^+$ Can shift γ from $B \rightarrow DK$ by up to several degrees

Large A_{CP} in three-body B decays to charged hadrons LHCb, arXiv:1306.1246; Bhattacharya, Gronau, JLR, 1306.2625 Large asymmetries in restricted regions of Dalitz plot, e.g.:

 $A_{CP}(B^+ \to \pi^+(\pi^+\pi^-)_{\text{low }m}) = +0.622 \pm 0.075 \pm 0.032 \pm 0.007 ,$ $A_{CP}(B^+ \to \pi^+(K^+K^-)_{\text{low }m}) = -0.671 \pm 0.067 \pm 0.028 \pm 0.007 .$

SM tree and penguin amplitudes interfere; FSI important U-spin, $\pi\pi \leftrightarrow K\bar{K}$ rescattering, and CPT play a role

MUON MAGNETIC MOMENT

Historical remarks on flavor-diagonal processes

- Cabibbo current in an SU(2): neutral component changes flavor Adding charm quark suppresses flavor-changing neutral current Neutrino neutral current interactions as weak as they could be!
- Merits/curiosities of the muon's anomalous moment a_{μ} Numbers from PDG 2012 review (A. Hoecker and W. Marciano): Exp-Th = $(287)(63)(49) \times 10^{-11}$, to be compared with: Electroweak: $154(1)(2) \times 10^{-11}$, light-by-light (70 to 140) $\times 10^{-11}$; $a^{SUSY} \simeq \pm 130 \times 10^{-11} \left(\frac{100 \text{ GeV}}{100 \text{ GeV}}\right)^2 \tan \beta$

$$a_{\mu}^{\rm SUSY} \simeq \pm 130 \times 10^{-11} \left(\frac{100 \text{ GeV}}{m_{\rm SUSY}}\right) \tan \beta$$

which has to be larger than the electroweak term! Where else do we see such sensitivity to SUSY?! The moral is: Flavor-diagonal processes are unique windows to new physics!

MUON TO ELECTRON TRANSITIONS 9/15

Historical remarks

- In 1962, two-neutrino discovery suppressed $\mu \to e \gamma$
- Otherwise (Feinberg), $\mathcal{B}(\mu \to e\gamma) = \mathcal{O}(10^{-4})$
- G. Jungman and I noted restrictive nature of $\mu \rightarrow e$ transitions: PL B **277**, 177 (1992): "rates comparable to or within a few orders of magnitude of current rate limits" from TeV-scale physics
- Present situation (deGouvea, Vogel, 1303.4097)

Light-neutrino mixing:

$$\mathcal{B}(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U^*_{\mu i} U_{ei} \frac{\Delta m^2_{i1}}{M^2_W} \right|^2 < 10^{-54}$$

Your favorite mixings, Δm^2 , $M_W^2 \rightarrow \Lambda^2$ easily exceed present limits Dipole operator ($\mu \rightarrow e\gamma$) and 4-fermion contact term ($\bar{\mu}e\bar{q}q \Rightarrow$ conversion in Al) limit scale $\Lambda > 10^3$ TeV at present

 $\mathcal{B}_{\mu \to e} < 7 \times 10^{-13} \text{ (present)} \to 10^{-16} \Rightarrow \Lambda \times 7 \text{ for contact term}$

ELECTRIC DIPOLE MOMENTS

SM contributions small (Filippone 2009; Hewett 2013)

Hadrons: If $\bar{\theta} = 0$, CKM contributions need to involve all three quark families; $d_n \simeq 10^{-31 \text{ to } -32} e \cdot \text{cm}$ (three loops)

¹⁹⁹Hg: $d \simeq 10^{-33} e \cdot \text{cm}$ (heavy!)

Leptons: $d_e \simeq 10^{-39 \pm 1} e \cdot \text{cm}$ in standard model (four loops!)

Present status and prospects

Neutron: $d_n < 2.9 \times 10^{-26}$, factor of ~ 100 lower in five years ¹⁹⁹Hg: $d < 10^{-27} e \cdot cm$, factor of 10^5 lower by ???

Electron: Using cold molecules (e.g., YbF), large amplification: $d_e < 1.05 \times 10^{-27} e \cdot cm$; factor of 10^4 lower by ???

Remarks:

Many models beyond SM \Rightarrow observable effects if CPV phase $\neq 0$ Example: CPV in $h \rightarrow \gamma \gamma$ (McKeen, Pospelov, Ritz, 1208.4597)

DARK MATTER: THE ELEPHANT

Relevance to the flavor problem

We may be privileged to see only a small subset of gauge interactions

matter

Dark

matter

energy

Dark

- Possible: A gauge sector G with its own "exotic" charges Tip of the iceberg:
- ordinary quarks and leptons \Rightarrow
- Unseen part of the iceberg: \Rightarrow
- could be clue to nature of ordinary matter
- Blind men *do* have evidence of the elephant:
- Some particles may have both types of charges (astro-ph/0509196):

Type of matter	Std. Model	G	Example(s)
Ordinary	Non-singlet	Singlet	Quarks, leptons
Mixed	Non-singlet	Non-singlet	Superpartners
Hidden	Singlet	Non-singlet	E_8' of $E_8 \otimes E_8'$

HIDDEN SECTOR AND HIGGS

- Higgs: a different tip of the same iceberg? Light mass of Higgs: Higgs sector is *not* a replay of QCD $\times 2650!$ Nonetheless, composite Higgs theories refuse to die $q\bar{q}$ composites in QCD: Lightest states are pseudoscalar Higgs is $J^P = 0^+$; upper bounds on 0^- admixture are improving Possible non-vector-like interaction between fermions?
- Questions for Higgs and hidden sector
 - If Higgs is composite: One doublet or two?
 - Do Higgs, quarks, and leptons share $Q=\pm 1/2$ components? E.g,
 - O. W. Greenberg + J. Sucher, PL B **99**, 339 (1981);
 - H. Fritzsch + G. Mandelbaum, PL B 102, 319 (1981); 109, 224
 - Does the hidden sector play a role in generating a composite Higgs?

TWO FAMILIAR PATTERNS^{13/15}

TWO FAMILIAR PATTERNS^{14/15}

Periodic Table of the Elements

Each element has a different nuclear charge; electron shell structure governs chemistry; existience of Technetium predicted Planetary orbits

Titius/Bode: a(AU) = 0.4 + 0.3kwhere k = 0, 1, 2, 4, 8, ...predicted orbits of Ceres, Uranus

Titius/Bode law failed to predict orbit of Neptune; Pluto approximately where Neptune should have been; other dwarf planets don't fit; no dynamical explanation Simulations can give similar relations; \Leftrightarrow "anarchy" in quark-lepton masses.

CONCLUSIONS

Quarks and leptons: Periodic table or Titius-Bode?

- So far, no convincing theory
- Some useful differences between quarks and leptons

Further progress awaits better neutrino mixing measurements (including CP phase), improved understanding of the Higgs sector, and elucidation of the dark sector: What is hidden from us?

We are in a happy situation I have not seen since the '60's, when we really didn't know what was going on, but it didn't stop us from making progress!