

Studies of Asymmetries in Semileptonic B decays at LHCb

Michael D. Sokoloff University of Cincinnati

on behalf the LHCb collaboration (substituting for Liming Zhang)

LHCb-PAPER-2013-033 final 1fb⁻¹ result arXiv:1308.1048

Neutral Meson Mixing

The time evolutions of flavor for neutral B mesons (assuming CPT)

$$\begin{split} \mathbf{R} \begin{pmatrix} \mathbf{B} \to \mathbf{B} \\ \overline{\mathbf{B}} \to \overline{\mathbf{B}} \end{pmatrix} (\mathbf{t}) &= \frac{1}{2} \mathbf{e}^{\Gamma \mathbf{t}} (\cosh \frac{\Delta \Gamma \mathbf{t}}{2} + \cos \Delta \mathbf{m} \mathbf{t}) \\ \mathbf{R} \begin{pmatrix} \mathbf{B} \to \overline{\mathbf{B}} \\ \overline{\mathbf{B}} \to \mathbf{B} \end{pmatrix} (\mathbf{t}) &= \frac{2}{|\Delta \Lambda|^2} \begin{pmatrix} |\Lambda_{12}|^2 \\ |\Lambda_{21}|^2 \end{pmatrix} \mathbf{e}^{\Gamma \mathbf{t}} (\cosh \frac{\Delta \Gamma \mathbf{t}}{2} - \cos \Delta \mathbf{m} \mathbf{t}) \end{split}$$

are obtained by solving the Schrodinger equation:

$$\begin{split} \mathbf{i} \frac{\partial}{\partial \mathbf{t}} \begin{pmatrix} \mathbf{B}(\mathbf{t}) \\ \overline{\mathbf{B}}(\mathbf{t}) \end{pmatrix} &= \mathbf{\Lambda} \begin{pmatrix} \mathbf{B}(\mathbf{t}) \\ \overline{\mathbf{B}}(\mathbf{t}) \end{pmatrix}, \quad \text{with eigenvalues } \mathbf{B}_{\mathbf{L}} \text{ and } \mathbf{B}_{\mathbf{H}} \\ \mathbf{\Lambda} &= \begin{pmatrix} M_{11} & M_{12}e^{i\varphi_{\mathcal{M}}} \\ M_{12}e^{-i\varphi_{\mathcal{M}}} & M_{22} \end{pmatrix} - \frac{\mathbf{i}}{2} \begin{pmatrix} \Gamma_{11} & \Gamma_{12}e^{i\varphi_{\Gamma}} \\ \Gamma_{12}e^{-i\varphi_{\Gamma}} & \Gamma_{22} \end{pmatrix} \\ \mathbf{\Delta}\Gamma &= \Gamma_{\mathbf{H}} - \Gamma_{\mathbf{L}} \rightarrow 2\Gamma_{12}\cos(\varphi_{\Gamma} - \varphi_{\mathbf{m}}); \quad \mathbf{\Delta}\mathbf{m} = \mathbf{m}_{\mathbf{H}} - \mathbf{m}_{\mathbf{L}} = 2\mathbf{M}_{12} \\ \mathbf{A}_{\mathbf{fs}} \left(\mathbf{A}_{\mathbf{s}\ell}\right) &= \frac{|\mathbf{\Lambda}_{12}|^2 - |\mathbf{\Lambda}_{21}|^2}{|\mathbf{\Lambda}_{12}|^2 - |\mathbf{\Lambda}_{21}|^2} = \frac{\Gamma_{12}}{M_{12}}\sin(\varphi_{\Gamma} - \varphi_{M}) \end{split}$$

DPF 2013

Neutral Meson Mixing

The time evolutions of flavor for neutral B mesons (assuming CPT)

$$\begin{split} \mathbf{R} \begin{pmatrix} \mathbf{B} \to \mathbf{B} \\ \overline{\mathbf{B}} \to \overline{\mathbf{B}} \end{pmatrix} (\mathbf{t}) &= \frac{1}{2} \mathbf{e}^{\Gamma \mathbf{t}} (\cosh \frac{\Delta \Gamma \mathbf{t}}{2} + \cos \Delta \mathbf{m} \mathbf{t}) \\ \mathbf{R} \begin{pmatrix} \mathbf{B} \to \overline{\mathbf{B}} \\ \overline{\mathbf{B}} \to \mathbf{B} \end{pmatrix} (\mathbf{t}) &= \frac{2}{|\Delta \Lambda|^2} \begin{pmatrix} |\Lambda_{12}|^2 \\ |\Lambda_{21}|^2 \end{pmatrix} \mathbf{e}^{\Gamma \mathbf{t}} (\cosh \frac{\Delta \Gamma \mathbf{t}}{2} - \cos \Delta \mathbf{m} \mathbf{t}) \end{split}$$

which lead to the flavor-specific asymmetry:

$$\mathbf{A_{fs}}\left(\mathbf{A_{s\ell}}\right) = \frac{|\mathbf{\Lambda_{12}}|^2 - |\mathbf{\Lambda_{21}}|^2}{|\mathbf{\Lambda_{12}}|^2 - |\mathbf{\Lambda_{21}}|^2} = \frac{\Gamma_{12}}{M_{12}}\sin(\varphi_{\Gamma} - \varphi_M)$$

SM predictions from A. Lenz arXiv 1205.1444

$$\mathbf{A^d_{fs}} = (-4.1 \pm 0.6) \times 10^{-4}$$

$${f A_{fs}^s} = (1.91 \pm 0.3) imes 10^{-5}$$

$$\mathbf{A^s_{fs}} = -\mathbf{A^d_{fs}} imes \lambda^{\mathbf{2}} \,, \quad \lambda = \mathbf{0.22}$$

DPF 2013

Michael D Sokoloff

Example of a leading order amplitude

 \overline{s}, d

 \overline{B}_{sd}^0

 $\overline{t}, \overline{c}, \overline{u}$

t, c, u

b

s, d

 $\mathbf{B}^{0}_{s.d}$

Neutral Meson Mixing

The time evolutions of flavor for neutral B mesons (assuming CPT)

$$\begin{split} \mathbf{R} \begin{pmatrix} \mathbf{B} \to \mathbf{B} \\ \overline{\mathbf{B}} \to \overline{\mathbf{B}} \end{pmatrix} (\mathbf{t}) &= \frac{1}{2} \mathbf{e}^{\Gamma \mathbf{t}} (\cosh \frac{\Delta \Gamma \mathbf{t}}{2} + \cos \Delta \mathbf{m} \mathbf{t}) \\ \mathbf{R} \begin{pmatrix} \mathbf{B} \to \overline{\mathbf{B}} \\ \overline{\mathbf{B}} \to \mathbf{B} \end{pmatrix} (\mathbf{t}) &= \frac{2}{|\Delta \Lambda|^2} \begin{pmatrix} |\Lambda_{12}|^2 \\ |\Lambda_{21}|^2 \end{pmatrix} \mathbf{e}^{\Gamma \mathbf{t}} (\cosh \frac{\Delta \Gamma \mathbf{t}}{2} - \cos \Delta \mathbf{m} \mathbf{t}) \end{split}$$

which lead to the flavor-specific asymmetry:

$$\mathbf{A_{fs}}\left(\mathbf{A_{s\ell}}\right) = \frac{|\mathbf{\Lambda_{12}}|^2 - |\mathbf{\Lambda_{21}}|^2}{|\mathbf{\Lambda_{12}}|^2 - |\mathbf{\Lambda_{21}}|^2} = \frac{\Gamma_{12}}{M_{12}}\sin(\varphi_{\Gamma} - \varphi_M)$$

SM predictions from A. Lenz arXiv 1205.1444

$${f A_{fs}^d} = (-4.1\pm0.6) imes 10^{-4}$$

$${f A_{fs}^s} = (1.91 \pm 0.3) imes 10^{-5}$$

$$\mathbf{A^s_{fs}} = -\mathbf{A^d_{fs}} imes \lambda^2, \quad \lambda = \mathbf{0.22}$$

New physics models enhance flavorspecific asymmetries up to O(0.01) in both B_s ad B_d mixing. A D0 result [ref] suggested an asymmetry near this level.

DPF 2013

The LHCb Experiment

✤ 912 members from 17 countries in 65 institutes

this analysis: $\int \mathcal{L} \, dt = 1 \, \mathrm{fb}^{-1}$

DPF 2013

Single arm forward spectrometer

- Excellent tracking and vertexing
 - Impact parameter resolution ~ 20 μm (high pT)
- Unique hadron PID
 - Two RICH detectors: π , K, p ID to 100 GeV/c
- Muon and Calorimeter systems
 - Read-out at 40 MHz. p_T of muon and E_T of hadrons and γ 's input to L0 trigger
- High level trigger
 - Input 1 MHz, fully software based, offline reconstruction tuned for trigger constraints
- Dipole Magnet
 - $\int {f B} \cdot d\ell = 4$ Tm, polarity (Up / Down changed every ~100 pb⁻¹

Experimental Considerations I

 \checkmark

- Measuring A_{fs} requires a flavor-specific final state:
 - Use semileptonic decays: high BF, $\Delta b = -\Delta Q$
- Ideally, an analysis can tag flavor at production and can use t_d dependence to determine A_{fs} most precisely. However,
 - $\epsilon D^2 \sim 3\%$
 - decay time resolution is large compared to oscillation time
- Use a time-integrated, "untagged" analysis

$$\begin{split} \frac{R(B \rightarrow \mu^+ X_c)(t) - R(B \rightarrow \mu^- X_c)(t)}{R(B \rightarrow \mu^+ X_c)(t) + R(B \rightarrow \mu^- X_c)(t)} &= \frac{A_{fs}}{2} + \left(A_p - \frac{A_{fs}}{2}\right) \left(\frac{\cos \Delta m t}{\cosh \Delta \Gamma t/2}\right) \\ \frac{R(B \rightarrow \mu^+ X_c) - R(B \rightarrow \mu^- X_c)}{R(B \rightarrow \mu^+ X_c) + R(B \rightarrow \mu^- X_c)} &= \frac{A_{fs}}{2} + \left(A_p - \frac{A_{fs}}{2}\right) \left[1 + \left(\frac{\Delta m}{\Gamma}\right)^2\right]^{-1} \\ A_p \sim \mathcal{O}(1\%), \quad \left[1 + \left(\frac{\Delta m}{\Gamma}\right)^2\right]^{-1} \sim 0.14\% \end{split}$$
Last product of terms, convoluted with decay time acceptance, introduces asymmetry < 4 x 10^{-5} \\ DPF 2013 \qquad \text{Michael D Sokoloff} \qquad 5 \end{split}

Experimental Considerations II

- Measure A_{fs} for B_s using time-integrated semileptonic asymmetry.
 - We will develop a time-dependent method for measuring A_{fs} for B_d later
- Reconstruction efficiencies for particles and corresponding antiparticles may differ due to hadronic interactions with detector material.

Controlled using calibration channels.

- Left/Right asymmetries in detector used in conjunction with a dipole magnet may produce charge-dependent asymmetries.
 - Mitigated by changing magnet polarity about every 100 pb⁻¹.
 - Polarities analyzed separately, then combined.

DPF 2013

Signal Yields - Replace Plots

PDF = double Gaussian with common mean for signal, 2nd order Chebyshev polynomial for background

Fitted raw yields

Total statistics: 184817±484

	Magnet Up	Magnet Down
mass fitting		
$D_s^-\mu^+$	38742 ± 218	53768 ± 264
$D_s^+\mu^-$	38055 ± 223	54252 ± 259

DPF 2013

LHCb ГНСр

DPF 2013

Analysis Steps

Correct event yields for muon related asymmetries

- Due to PID and trigger
 - By use of calibration channels

Determine asymmetry caused by track reconstruction

- Due to different interactions of particle/anti-particle with detector and to magnet effects
 - By use of calibration channels

Determine asymmetry caused by background

- Prompt and B related
 - Determine from data

Muon Related Asymmetry

Calibration channel: $J/\psi \rightarrow \mu + \mu$ -

- Two samples used:
 - Events triggered by hadronic B decays not including the J/ψ in the final state
 KS
 - Events triggered by a single muon MS
- Tag and Probe
 - Tag = one good muon, probe = track not used in trigger + PID + forming a good vertex with the tag muon forming a good J/ψ.
 - Determine PID and trigger efficiencies of μ+ and μ⁻ in kinematic bins.

A^{c}_{μ} [%]	KS muon correction		MS muon correction		Average
Magnet	$pp_x p_y$	$pp_t\phi$	pp_xp_y	$pp_t\phi$	
Up	$+0.38\pm0.38$	$+0.30\pm0.38$	$+0.64\pm0.37$	$+0.63\pm0.37$	$+0.49\pm0.38$
Down	-0.17 ± 0.32	-0.25 ± 0.32	-0.60 ± 0.32	-0.62 ± 0.32	-0.41 ± 0.32
Avg.	$+0.11\pm0.25$	$+0.02\pm0.27$	$+0.02\pm0.24$	$+0.01\pm0.24$	$+0.04\pm0.25$

Efficiency ratio as

DPF 2013

Tracking Asymmetry

Use partially reconstructed D*+ decays: vertex and kinematic constraints determine the momentum of the missing π +. Determine tracking efficiency ratio $\epsilon(\pi+)/\epsilon(\pi-)$ as a function of momentum.

Kinematic weighting with signal: $A_{Track}(\mu^{\pm}\pi^{\mp}) = (0.01 \pm 0.13)\%$

No tracking asymmetry in pure $\phi \rightarrow K+K-$. But S-wave K+,K- can interfere.

$$\frac{\mathbf{N}(\mathbf{D}^- \to \mathbf{K}^+ \pi^- \pi^-)}{\mathbf{N}(\mathbf{D}^+ \to \mathbf{K}^- \pi^+ \pi^+)} \times \frac{\mathbf{N}(\mathbf{D}^+ \to \mathbf{K}_{\mathbf{S}}^{\mathbf{0}} \pi^+)}{\mathbf{N}(\mathbf{D}^- \to \mathbf{K}_{\mathbf{S}}^{\mathbf{0}} \pi^-)} = \frac{\varepsilon(\mathbf{K}^+ \pi^-)}{\varepsilon(\mathbf{K}^- \pi^+)}$$

$$\Rightarrow \mathbf{A}_{\mathrm{Track}}(\mathbf{K}^{+}\mathbf{K}^{-}) = (\mathbf{0.012} \pm \mathbf{0.004})\%$$

D*1

 D^0

DPF 2013

Michael D Sokoloff

(π+)

 π

Background Asymmetries

Prompt D_s background estimated from 2-dim fit of In(IP/mm) as a function of m(K⁺K⁻ π ⁻)

$$\begin{split} \mathbf{A}_{\rm bkdg}^{\rm Up} &= (+0.14 \pm 0.07)\% \\ \mathbf{A}_{\rm bkdg}^{\rm Down} &= (-0.05 \pm 0.05)\% \end{split} \Rightarrow \mathbf{A}_{\rm bkgd} = (\mathbf{0.04} \pm \mathbf{0.04})\%$$

Backgrounds from B hadrons

- False- μ and D_s from b-hadrons decays $~~{\bf A}_{\rm bkgd} < 0.01\%$
- μ and Ds from b-hadron decays (e.g., $\overline{\mathbf{B}} \to \mathbf{D_s} \overline{\mathbf{D}} \mathbf{X}$; $\overline{\mathbf{D}} \to \mu^- \mathbf{X}'$)

 $egin{array}{lll} {f A}_{
m bkgd} < {f 0.01\%} \ {f A}_{
m bkgd} = ({f 0.01 \pm 0.04})\% \end{array}$

using measurements of branching fractions, b-hadron fractions, production asymmetries

Putting all together

$$\mathbf{A}_{\text{meas}}^{\mathbf{s}} = \frac{\mathbf{N}(\mathbf{D}_{\mathbf{s}}^{-}\mu^{+})/\varepsilon(\mu^{+}) - \mathbf{N}(\mathbf{D}_{\mathbf{s}}^{-}\mu^{+})/\varepsilon(\mu^{-})}{\mathbf{N}(\mathbf{D}_{\mathbf{s}}^{-}\mu^{+})/\varepsilon(\mu^{+}) - \mathbf{N}(\mathbf{D}_{\mathbf{s}}^{-}\mu^{+})/\varepsilon(\mu^{-})} - \mathbf{A}_{\text{track}} - \mathbf{A}_{\text{bkg}}}$$
$$\mathbf{A}_{\mu}^{\mathbf{c}} = (0.04 \pm 0.25)\%$$

	Sources	σ (A _{meas}) [%]
Systematic uncertainties:	Signal modeling and muon correction	0.07
	Statistical uncertainty on efficiency ratios	0.08
	Background subtraction	0.05
	Asymmetry in track reconstruction	0.13
	Different magnet polarity run conditions	0.01
	Software trigger bias (topological trigger)	0.05
	Total	0.18

 ${f A}_{
m fs} = {f 2} imes {f A}_{
m meas} = (-0.06 \pm 0.50 \pm 0.36)\%$

DPF 2013

Comparison with other experiments

 $\mathbf{A}_{\mathrm{fs}} = (-0.06 \pm 0.50 \pm 0.36)\%$

Most precise measurement
In agreement with SM predictions

See plenary talk by Marina Artuso, Physics using the 5 Lighter Quarks and Charged Leptons, for additonal discussion (Friday, 10:10 AM)

LHC

Summary

 \Box A_{fs} final result with 1 fb⁻¹:

 $\mathbf{A}_{\rm fs} = (-0.06 \pm 0.50 \pm 0.36)\%$

□ Significant improvements anticipated:

□ 3 fb⁻¹ of Run I data already;

□ Run II (starting 2015) anticipate 5 fb⁻¹ at \sqrt{s} = 13 TeV, ~ 2 x the \sqrt{s} = 7 GeV B cross section;

Run III (after 2018) plan to integrate 50 fb⁻¹ with a more efficient trigger;

Measure A_{fs} for B_d as well (using a timedependent analysis as the production asymmetry is order 1% and Δm/Γ is not large).

Backup Material

Michael D Sokoloff

16

Muon Corrected Asymmetry

17