Studies of hadronic B decays to open charm mesons at LHCb Steven Blusk, Syracuse University (on behalf of the LHCb collaboration)

DPF 2013, UC Santa Cruz, Aug. 13-18, 2013.

Introduction

- A number of "firsts" emerging in the study of hadronic B decays to open charm.
 - Going beyond the "Dh[±]" modes, we're exploring 5, 6, and 7 particle final states.
 - Provide additional probes of CKM parameters
 - Ultimate precision on γ/ϕ_3 must take advantage of many b-hadron decays
 - Study of strong interaction dynamics.
 - Made possible due to:
 - large $\sigma_{\rm bb}$ @LHC, and
 - excellent capabilities of LHCb to trigger on and fully reconstruct high multiplicity final states.
- Here, we discuss some of the recent results from LHCb on B→DX..
- All results based on 1 fb⁻¹, unless otherwise noted.

First observation of $B_s \rightarrow D^0 \phi$

- Motivation: γ determination using TI (ala B⁻ \rightarrow D⁰K⁻) or TD (as in B_s \rightarrow D_sK) analyses.
 - Both are **theoretically clean**.
 - Start with $D^0 \rightarrow K\pi$. More final states needed for TI γ determination.
- First goal is to observe the decay and measure rates.

- Normalize to $B_s \rightarrow D^0 K^{*0}$

- Also improve measurement of $\mathcal{B}(B_s \rightarrow \overline{D}^0 K^{*0})$, normalized relative to $\mathcal{B}(B^0 \rightarrow \overline{D}^0 K^{*0})$.
- All results are **preliminary**, see LHCb-PAPER-2013-035

Signals in data

Results on branching fractions

$$\frac{\mathcal{B}(B_s^0 \to \overline{D}^0 \overline{K}^{*0})}{\mathcal{B}(B^0 \to \overline{D}^0 \overline{K}^{*0})} = 7.8 \pm 0.7_{stat} \pm 0.3_{syst} \pm 0.6_{fs/fd}$$

Using
$$B(B^0 \to \overline{D}^0 K^{*0})_{PDG} = (4.2 \pm 0.6) \times 10^{-5}$$

Source	$\mathcal{R}_{K^{*0}}$	\mathcal{R}_{ϕ}
PID	-	0.002
Trigger	-	0.003
Flight distance	-	0.002
Selection	-	0.002
Simulation statistics	0.10	0.001
Fit bias	0.03	0.001
Signal model	0.04	0.001
Background model	0.01	0.001
Charmless correction	0.10	0.003
Non-resonant correction	0.22	0.004
ϕ branching fraction	-	0.001
Total	0.26	0.007

$$\mathcal{B}(B_s^0 \to \overline{D}^0 \overline{K}^{*0}) = \left(3.3 \pm 0.3_{stat} \pm 0.1_{syst} \pm 0.3_{fs/fd} \pm 0.5_{B(B^0 \to \overline{D}^0 K^{*0})}\right) \times 10^{-4}$$

(Consistent with & more precise than previous LHCb measurement)

Also $B_s \rightarrow \overline{D}^0 \phi$ observed & measured for the 1st time:

$$\frac{\mathcal{B}(B_s^0 \to \overline{D}^0 \phi)}{\mathcal{B}(B_s^0 \to \overline{D}^0 \overline{K}^{*0})} = 0.069 \pm 0.013 \pm 0.007$$

Leading to the absolute branching fraction:

$$\mathcal{B}(B_s^0 \to \bar{D}^0 \phi) = \left(2.3 \pm 0.4_{stat} \pm 0.2_{syst} \pm 0.5_{B(B_s^0 \to \bar{D}^0 \bar{K}^{*0})}\right) \times 10^{-5}$$

Searches for decays proceeding via W-exchange & penguin annihilation

□ Limited information available on the role of these decays in hadronic B decays. □ $B^{0} \rightarrow D_{s}^{(*)}K^{(*)}$ and $B_{s} \rightarrow \pi^{+}\pi^{-}$ are the only other observed decays that proceed through these suppressed diagrams.

□ Double-charm final states also of interest for CKM angle determinations, such as γ (combine several B→DD'), 2β (B⁰→D⁺D⁻), and $2\beta_s$ (B_s→D_sD_s)

Search for $B_s \rightarrow D^{(*)} \pi^+$

LHCb, PRD87 071101 (2013)

- \clubsuit Bin in the angle between D* and π in lab frame.
- Exploits better mass resolution with larger opening angle.

 $\mathcal{B}(B_s \rightarrow D^*\pi) \sim 1 \times 10^{-6}$ expected, from $\lambda^2 \times B(B^0 \rightarrow D_s K)$.

Double charm final states

Observation of $B_{(s)} \rightarrow D^+D^-$, $D^0\overline{D}^0_{PRD87\ 092007\ (2013)}$

LHCb, PRD87 092007 (2013)

Relative BFs $\frac{\mathcal{B}(\bar{B}^0_s \to D^+ D^-)}{\mathcal{B}(\bar{B}^0 \to D^+ D^-)} = 1.08 \pm 0.20(\text{stat}) \pm 0.10(\text{syst})$ $\frac{\mathcal{B}(\bar{B}^0_s \to D^0 \bar{D}^0)}{\mathcal{B}(B^- \to D^0 D_s^-)} = 0.019 \pm 0.003(\text{stat}) \pm 0.003(\text{syst})$ Absolute BFs $\mathcal{B}(\bar{B}^0_s \to D^+ D^-)$

 $= (2.2 \pm 0.4(\text{stat}) \pm 0.2(\text{syst}) \pm 0.3(\text{norm})) \times 10^{-4}$

 $\mathcal{B}(\bar{B}^0_s \to D^0 \bar{D}^0)$

 $= (1.9 \pm 0.3(\text{stat}) \pm 0.3(\text{syst}) \pm 0.3(\text{norm})) \times 10^{-4}$

- **↓** $B_s \rightarrow D^+D^-$, $D^0\overline{D}^0$ consistent, would expect so. **↓ ~10X larger than** $B^0 \rightarrow D_s K$
- Consistent with both PQCD predictions, and those based on rescattering, but large theory errors.
- Look forward to more on these final states!

Other B→DD' signals / observations PRD87 092007 (2013)

Why is this ratio only ~0.5 ? \rightarrow If TREE only, expect ratio \approx 1? Is this telling us something about PA and E contributions (which contribute to B_s \rightarrow D_sD_s, but not B⁰ \rightarrow D_sD)

$$\frac{B(\bar{B}_s^0 \to D_s^+ D^-)}{B(B^0 \to D^- D_s^+)} = 0.050 \pm 0.008(\text{stat}) \pm 0.004(\text{syst})$$

≈ $tan^2\theta_c!$ as expected, tree dominant.

Large and clean signals !

Moving up: $B_c \rightarrow J/\psi D_s^{(*)}$

- Very little information yet available on B_c decays due to their low production rate.
- Expect tree diagrams to dominate

From naïve factorization, would expect...

$$\begin{split} \mathcal{R}_{D_s^+/\pi^+} &\equiv \frac{\Gamma(B_c^+ \to J/\psi D_s^+)}{\Gamma(B_c^+ \to J/\psi \pi^+)} \approx \frac{\Gamma(B \to \bar{D}^* D_s^+)}{\Gamma(B \to \bar{D}^* \pi^+)}, \\ \mathcal{R}_{D_s^{*+}/D_s^+} &\equiv \frac{\Gamma(B_c^+ \to J/\psi D_s^{*+})}{\Gamma(B_c^+ \to J/\psi D_s^+)} \approx \frac{\Gamma(B \to \bar{D}^* D_s^{*+})}{\Gamma(B \to \bar{D}^* D_s^{*+})}, \end{split}$$

$\mathcal{R}_{D^+_s/\pi^+}$	$\mathcal{R}_{D_s^{\star+}/D_s^+}$	
2.90 ± 0.42 1.58 ± 0.34	$\begin{array}{c} 2.20 \pm 0.35 \pm 0.62 \\ 2.07 \pm 0.52 \pm 0.52 \end{array}$	with B^0 with B^+
1.3 2.6 2.0 2.2	3.9 V. 1.7 Cola 2.9 Iv	Kiselev hep-ph/0308214 angelo et al PRD61 (2000) vanov et al PRD73 (2006) Dhir et al PRD79 (2009)
1.2	•••• СН	Chang et al PRD49 (1994)

Analysis

- Use $J/\psi \rightarrow \mu^+\mu^-$ triggered events;
 - J/ ψ displaced from PV by > 3 $\sigma_{disp.}$
- Reconstruct $D_s \rightarrow \phi \pi$, $\phi \rightarrow KK$ candidates.
- Combine J/ ψ and D_s candidates to form B_c candidates
 - J/ ψ and D_s mass & vertex constraints imposed in fitting the decay.
- Excellent mass resolution due to large $M(J/\psi+D_s)$

Unbinned maximum likelihood fit			
Parameter	Value		
$m_{B_c^+} [\text{MeV}/c^2]$ $\sigma_{B_c^+} [\text{MeV}/c^2]$ $N_{B_c^+ \to J/\psi D_s^+}$	6276.28 ± 1.44 7.0 ± 1.1 28.9 ± 5.6		
$\frac{N_{B_c^+} \rightarrow J/\psi D_s^{*+}}{N_{B_c^+} \rightarrow J/\psi D_s^{+}}}{f_{\pm\pm} [\%]}$	2.37 ± 0.56 52 ± 20		

Results on B_c \rightarrow J/\psi D_s

PRD87, 112012 (2013)

4 Normalize with respect to $B_c \rightarrow J/\psi \pi$

$$\frac{\mathcal{B}(B_c^+ \to J/\psi D_s^+)}{\mathcal{B}(B_c^+ \to J/\psi \pi^+)} = 2.90 \pm 0.57 \pm 0.24$$

Closer to B⁰ ratio (see below)

$$\frac{\mathcal{B}(B_c^+ \to J/\psi D_s^{*+})}{\mathcal{B}(B_c^+ \to J/\psi D_s^{*})} = 2.37 \pm 0.56 \pm 0.10$$

Consistent with factorization...

$\mathcal{R}_{D^+_s/\pi^+}$	$\mathcal{R}_{D_s^{\star +}/D_s^+}$	
2.90 ± 0.42 1.58 ± 0.34	$\begin{array}{c} 2.20 \pm 0.35 \pm 0.62 \\ 2.07 \pm 0.52 \pm 0.52 \end{array}$	with B^0 with B^+
1.3 2.6 2.0 2.2 1.2	3.9 V. 1 1.7 Colar 2.9 Iva CH C	Kiselev hep-ph/0308214 ngelo et al PRD61 (2000) anov et al PRD73 (2006) Dhir et al PRD79 (2009) hang et al PRD49 (1994)

LHCb-PAPER-2013-034 (Preliminary)

3 fb

All B_c decays to date obs'd via b→c→ψ^(')X
"Easily" triggered on using ψ^(') → μ⁺μ⁻.
c→s mean B_c → B_sX ... more difficult

to trigger on and reconstruct.

- 4 This analysis reports the **first observation** of $B_c \rightarrow B_s \pi$.
- Wide range of theoretical predictions for the branching fraction, from a few percent to ~20%.
- Strategy is to take fully reconstructed B_s decays, add a π^+ and search for a peak at the B_c mass.
- Goal is to measure:

$$\frac{\sigma(B_c^+)}{\sigma(B_s^0)}\mathcal{B}(B_c^+\to B_s^0\pi^+)$$

\Box Form B_c^+ candidates

 \Box B_s selection: mass windows [5335-5407] for D_s π , [5330-5410] for J/ $\psi\phi$

 \Box π^+ : p_T>100 MeV, IP χ^2 > 2 & loose PID

□ BDT used to distinguish signal from background.

 $\Box \epsilon(B_s)/\epsilon(B_c)$ obtained from simulation, except PID (uses D^{*+} calib data)

Assuming $B_c \rightarrow J/\psi \pi = 0.15\%$ from Ivanov et al, from theory, leads to $\mathcal{B}(B_c \rightarrow B_s \pi)^{\sim}10\%$ but large uncertainty. Well within the wide range of predictions

Summary

- Many interesting measurements in b→cX decays performed with 1 fb⁻¹ data sample.
- Several aimed at measuring γ or input to the combined γ determination.
- Large samples being used to probe Weak exchange, Penguin annihilation decays.
 - New double-charm final states uncovered..
 - Promising for CPV and CKM angle m'ments..
- New B_c decay discoveries, $B_c \rightarrow B_s \pi$, $B_c \rightarrow J/\psi D_s$
 - Excellent prospects for more B_c decay mode discoveries

Stay tuned for full 2011+2012 3 fb⁻¹ results!