

Search for W' Production in the Single Top Channel with the ATLAS Detector

Patrick True (MSU) August 15th 2013

- Most recent result [ATLAS-CONF-2013-050]
- Why look for $W' \rightarrow tb$?
 - W' is a common feature of many new physics models.
 - The W' \rightarrow tb channel is complementary to the W' \rightarrow to search channel.
 - . When $W' \rightarrow \ell v$ is suppressed, such as when $m_{neutrino} > m_{W'}$, the $W' \rightarrow tb$ channel has sensitivity competitive with $W' \rightarrow \ell v$.
 - It is also possible that the W' is coupled more strongly to the 3rd generation quarks.
 [arXiv:hep-ph/9603349]
 [arXiv:hep-ph/9602390]

The ATLAS Detector

- Information from all of the ATLAS detector systems is used.
- In the event selection the jets and leptons are required to be centrally located where the detector has the best resolution.

Backgrounds

- . Multijet
 - Normalized by fitting the MET distribution without the 35 GeV selection cut.
 - Shape is obtained by allowing jets to fake electrons in a simulated dijet sample.

W+jets

- Normalized by subtracting all other backgrounds from the data in the control region M(W') < 270 GeV for each selection channel.
- Shape is taken from Monte Carlo simulation.

• The remainder of the backgrounds are modeled in Monte Carlo simulation and are scaled to the theoretical prediction.

Sample	Generator	
ttbar	MC@NLO+HERWIG (Parton Shower and Hadronisation) MC@NLO+JIMMY (Multiple Parton Scattering and Underlying Event)	
Single-top t-channel	ACERMC+PYTHIA	
Single-top Wt	MC@NLO+HERWIG	
Single-top s-channel	MC@NLO+HERWIG	
Diboson	HERWIG	
Z+jets	ALPGEN+HERWIG	
W+jets	ALPGEN+HERWIG	
Multijet	ΡΥΤΗΙΑ	
W	MADGRAPH+PYTHIA	

Systematic Uncertainties (1)

- We consider the following uncertainties:
 - Lepton Energy Scale and Resolution
 - The uncertainty in the lepton energy scale and energy resolution are propagated through the analysis.
 - Lepton Identification and Trigger Efficiency
 - . The uncertainty in the lepton identification efficiency and the trigger efficiencies are assessed.
 - Jet Energy Scale One of the dominant systematics
 - The uncertainty in the jet energy scale (JES) is assessed for each jet dependent on its p_T and position in the detector and is propagated to the calculation of the missing transverse energy.
 - Jet Energy Resolution
 - . The impact of the jet energy resolution uncertainty is assessed by smearing the jet energy in all samples.
 - Jet Reconstruction Efficiency
 - The uncertainty in the jet reconstruction efficiency is assessed by randomly dropping jets from events.

- **b-tagging Performance** One of the dominant systematics

- The uncertainty in the b-tagging efficiency and the mistagging rates are estimated from data.
- Monte Carlo Generator
 - . The uncertainty in the ttbar yield due to the Monte Carlo generator is assessed by taking the larger of the differences between the nominal MC@NLO sample and samples produced using POWHEG+HERWIG and ALPGEN+HERWIG.
- Parton Shower Modeling
 - The uncertainty in the ttbar acceptance due to the parton shower modeling is assessed by taking the difference between samples produced using POWHEG+HERWIG and POWHEG+PYTHIA.
- Initial State Radiation/Final State Radiation (ISR/FSR)
 - The dependence of the top-quark backgrounds on the ISR/FSR modeling is assessed by taking the largest difference from a set of samples generated using ACERMC+PYTHIA with varying **PYTHIA ISR and FSR parameter settings.**

- Parton Distribution Function (PDF)
 - The PDF uncertainty is estimated for the top-quark and signal samples normalizing the envelope of CT10, MWST2008NLO68CL, and NNPDF2X at 68% CL to the nominal cross-section.

Theoretical Cross-section Normalization One of the dominant systematics

- For each sample which is normalized to the theoretical crosssection we assess a flat rate uncertainty to account for the scale variations and the uncertainties in α_s and PDFs.
- Multijet Background Normalization
 - . We assess a 50% uncertainty on the multijet background rate.
- W+jets Background
 - . By propagating the effects of all other systematics in the control region we assess the uncertainty in the W+jets rate. The uncertainty in the modeling is estimated using samples produced while varying the ALPGEN parameters parton p_T and the functional form of the factorization scale.

Systematic Uncertainties (4)

- Jet Vertex Fraction
 - . The effects of the uncertainty on the jet vertex fraction is assessed on the rates of all samples.
- Luminosity
 - The uncertainty in the integrated luminosity used in this analysis is 3.6%, derived from beam-separation scans performed in April 2012.
- MC Statistics
 - . The impact of limited size simulated samples is taken into account.

- For each channel a Boosted Decision Tree (BDT) is trained using the ROOT Toolkit for Multivariate Data Analysis (TMVA).
 - For the training signal the simulation of right handed W' with a mass of 1750 GeV is used.
 - Variables are selected from a long list of kinimatic variables.
 - Selected variables are required to have a discriminating power greater than 20%.
 - Selected variables must be well modeled in the 1-tag control region.

2-Jet 2-Tagged BDT Variables

m _{tb}	p _T (b ₂)	
p _T (t)	p _T (I)	
$\Delta R(l, b_2)$	$\Delta R(l, t)$	
H _T (l, jets, MET)	$\Delta R(I, W)$	
m _{b1b2}	$\Delta R(b_1, b_2)$	
E _T (W)	sphericity	
p _T (b ₁)	aplanarity	

3-Jet 2-Tagged BDT Variables

m _{tb}	∆η(l <i>,</i> t)
p _T (t)	$\Delta R(b_1, t)$
sphericity	$\Delta R(b_1, W)$
p _T (b ₁)	$\Delta R(l, b_1)$
p _T (I)	aplanarity
M _{lb1b2}	$\Delta \phi(W, t)$
Δη(l, W)	-

Discriminating Power

Discriminating power is determined by plotting the background vs. signal efficiencies (ε_B vs. ε_S) for successive cuts on each variable and taking the area between the resulting curve and the line $\varepsilon_B = \varepsilon_S$.

 The BDT output for the 2 jet and 3 jet selections are above.
A right handed W' signal with a mass of 1.5 TeV is added to the backgrounds to illustrate what a signal would look like in the analysis.

Event Yields

	2-jet 2-tag channel	3-jet 2-tag channel
	2 jet 2 tag entaimer	e jet 2 tag enamer
W_R' (0.5 TeV)	11800 ± 2700	8200 ± 1800
W_R' (1.0 TeV)	600 ± 150	660 ± 160
W_R' (1.5 TeV)	42 ± 11	56 ± 13
W_R' (2.0 TeV)	4.2 ± 1.1	6.2 ± 1.5
W_R' (2.5 TeV)	0.69 ± 0.17	0.87 ± 0.20
W_R' (3.0 TeV)	0.22 ± 0.06	0.25 ± 0.06
	8200 × 2100	22000 . 5000
tt	8300 ± 2100	22000 ± 5000
Single-top <i>t</i> -channel	1000 ± 270	1400 ± 400
Single-top Wt	400 ± 80	880 ± 170
Single-top s-channel	310 ± 90	160 ± 50
W+jets	3600 ± 1900	4000 ± 5000
Diboson	130 ± 60	80 ± 40
Z+jets	26 ± 20	42 ± 30
Multijets	710 ± 350	410 ± 210
Total bkg.	14400 ± 3100	29000 ± 7000
Data	14138	27759

 The final event yields for several right handed W' signal mass points as well as the backgrounds and data.

- With no observed excess in the data we calculate exclusion limits on the production cross-section of the signal as a function of its mass.
 - We use the CL_s procedure to calculate exclusion limits at the 95% confidence level using a log-likelihood ratio (LLR) as the test statistic. $\int (data | H_s)$

$$LLR = -2\ln\frac{\mathcal{L}(data \mid H_1)}{\mathcal{L}(data \mid H_0)}$$

 H_1 is the test hypothesis which includes the signal H_0 is the null hypothesis which includes no signal

- Pseudo-experiments are generated for each hypothesis.
 - Statistical fluctuations are treated on a bin-by-bin basis as Poisson fluctuations.
 - Systematic uncertainties are treated on a bin-by-bin basis as independent Gaussian fluctuations.

- The bin probabilities are combined into a total probability.
 - Each channel's probability is the product its bins' Poisson probabilities.
 - The total probability is the product of the channels' probabilities.
- CL_{s+b} (CL_b) is defined as the fraction of pseudo-experiments generated with the signal-plus-background (background only) hypothesis with LLR greater than the observed or expected LLR.
- Cross-sections are considered excluded at the 95% confidence level if $CL_s = CL_{s+b}/CL_b < 0.05$.
- To reduce the effects of the systematics on the limit we fit the ttbar yield to data during the statistical analysis.

- Both 2 and 3 jet channels are combined and exclusion limits on the cross-section time branching ratio for each W' mass are placed.
- For a W' with standard model couplings, the mass lower limits are:
 - W′_L > 1.74 TeV
 - W′_R > 1.84 TeV

 Limits can also be set on g' as a function of W' mass for models with Lagrangians of the form:

$$\mathcal{L} = \frac{V'_{ij}}{2\sqrt{2}} \bar{f}_i \gamma_\mu \left(g'_{R_{i,j}} (1 + \gamma^5) + g'_{L_{i,j}} (1 - \gamma^5) \right) W'^\mu f_j + h.c.$$

- The production vertex has a g^{'2} dependence.
 - By taking the ratio of our cross-section limit and the standard model coupling cross-section for each W' mass, limits on g'/g can be derived.
 - The W' resonance width, $\Gamma_{W'}$, is also dependent on g^{'2} so the cross section is sensitive to the initial-state quark PDFs.
 - The cross-section's dependence on g'/g and $m_{W'}$ is estimated using MADGRAPH and the effects are found to be at most a few percent for g'/g < 2 and thus they are neglected.

- . Limits on g'/g as functions of W' mass.
- For values of g'/g > 2, the W' width becomes significant and interactions with the initial state quarks' PDF must be taken into account.

- Update with the full 20.4 fb⁻¹ of 8 TeV data.
 - This includes updated recommendations from other groups.
- . Include 1-tag events as an independent channel.
- . More robust BDT strategy
 - Training separate BDTs for left and right handed samples, possibly training different BDTs for different mass ranges.
- Improved event selection
 - Relaxing the muon isolation requirement increases the signal efficiency by up to ~50%.
 - [arXiv:1307.1820] Investigating boosted-b-tagging using soft-lepton-tagging.
 - More stringent event selection for 1-tag events may be necessary to control the backgrounds.

Summary

- We searched for W'→tb→lvbb in 14.3 fb⁻¹ by considering events with a single lepton, MET, and 2 b-tagged jets and applying boosted decision trees to construct multivariate discriminants.
- When no excess was observed, limits are placed on the mass of a W' with standard model couplings of:
 - W'_L > 1.74 TeV
 - W'_R > 1.84 TeV
- . Limits are also calculated for g'/g as a function of W' mass.
- Our group also has a hadronic analysis in progress.
- Updated results should be available this fall!

m_{tb} Distribution

- m_{tb} is the invariant mass of the reconstructed top and bottom quarks, which is the W' invariant mass.
- This is the most discriminating variable for both selections.

p_T(t) Distribution

- p_T(t) is the transverse momentum of the reconstructed top quark.
- This is the second most discriminating variable for both selections.

BDT Distribution 2 Jets

BDT Distribution 3 Jets

