

Statistical treatment in search for VH (H→bb) with the ATLAS detector

Yao Ming University of Wisconsin-Madison

DPF Meeting, Santa Cruz, CA

August 15, 2013

Introduction

- ★ Why H→bb ? Why perform VH analysis?
- Complex analysis with numerous categories :
 - + VH : ZH $(Z \rightarrow v+v)$, WH $(W \rightarrow l+v)$ and ZH $(Z \rightarrow l+l)$.
 - Signal regions : 2 jets and 3 jets.
 - Control regions for W/Z + jets and Top background.
 - Each region have 5(3) W/Z PT bins.
- Background modeling
 - + QCD : data driven
 - W/Z + jets : $\Delta \phi(jj)$ correction, normalization float in global fit.
 - ★ Top : Top P^T correction, normalization float in global fit.
 - Single top, Diboson : from MC.

Statistical treatment :

- Global Fit : Use complimentary information from all regions to constrain background normalizations and shapes.
- SM Diboson Fit : Validation of fit model with identical procedure used for the Higgs boson search.
- + Higgs Fit : Perform search for the VH (H→bb) production.

Global fit : constrain normalization

250

WISCONSIN

m_{bi} [GeV]

200

100

Experimental : •JER/JES

- •B-tagging
- •Lepton ID
- •MET
- Modeling :
 - •mbb
 - •W/Z P_T
 - •Top P_T
 - •Jet multiplicity

•MET Migration between channels through lepton systematics

- Modeling :
 - **m**bb
 - •W/Z P_T
 - •Top P_T
 - •Jet multiplicity

Modeling :

• mbb

- •W/Z P_T
- •Top P_T

Global fit : results

•Strictly require the normalization of all backgrounds to be controlled by the same parameter globally.

TTbar	TTbar (float)
Wb	Wbb,Wcc,Wbl (float)
Wcl	Wcl (float)
Zb	Zbb, Zcc, Zbl (float)
Zcl	Zcl (float)
WI	10%
ZI	10%
Singletop	4%-7%
Diboson	5%-7%

Process	Scale factor
$t\bar{t}$	1.13 ± 0.05
Wb	0.89 ± 0.15
Wcl	1.05 ± 0.14
Zb	1.30 ± 0.07
Zcl	0.89 ± 0.48

Scale factors for normalizations of each background. Obtained from global fit of 7+8TeV

SM diboson fit (I)

 \overline{q}

 \overline{a}

•Diboson With a Z boson decaying to a pair of b quarks has a signature very similar to the considered in this analysis.

- ♦ Softer Prob spectrum.
- Lower mbb value
- Larger cross-section (5×)
- Perform diboson fit as a validation of the analysis procedurge
 - + Allow normalization of diboson to float with scale factor μ_{VZ} .
 - SM Higgs boson treated as a background with 50% uncertainty on the cross-section
 - Small contribution of WW is considered as a background.

SM diboson fit (II)

Observed significance σ : 4.8 Expected significance σ : 5.1

μvz values calculated for 7TeV, 8TeV separately and combined together.

The individual μ vz values

for the lepton channels are obtained from a simultaneous fit with the signal strength for each channel floating independently.

 $\mu_{vz} = 0.9 \pm 0.2$ Agrees with the SM expectation of $\mu_{vz} = 1.0$

ATLAS-CONF-2013-079

<u> </u>

YAO MING (U. Wisconsin)

Aug 15, 2013

Results : Limits for VH $(H \rightarrow b\overline{b})$

YAO MING (U. Wisco

ATLAS-CONF-2013-079

σ_{SM}

ATLAS Preliminary

Results : Signal strength for VH $(H \rightarrow b\overline{b})$

YAO MING (U. Wisconsin)

Results : Significance for VH $(H \rightarrow b\overline{b})$

m_H=125GeV

Observed significance σ : 0.36 Expected significance σ : 1.64

ATLAS-CONF-2013-079

- ★ New preliminary results from the ATLAS search for VH, H→bb production, combination of full 7 TeV (4.7 fb⁻¹) and 8 TeV (20.3 fb⁻¹) datasets.
- ***** Complex analysis split into numerous categories to improve sensitivities.
- For Validation of the analysis, the diboson VZ cross-section is measured. The result is consistent with SM prediction with an observed (expected) significance of 4.8 (5.1) standard deviations.
- ★ The search for VH production is performed and a combined observed (expected) limit of 1.4 (1.3) × SM at 95% CL is obtained.
- * The observed signal strength is 0.2 ± 0.5 (stat.) ± 0.4 (syst.) at m_H = 125GeV.
- ***** Fit is consistent with both a SM Higgs and no SM Higgs.
- ***** More data needed.....

- •Use complimentary information from *many* regions to constrain background normalization and shape.
- •Multijet : Normalizations and shapes are estimated from data.
- •Other backgrounds : Taken from the simulation.
 - •Normalizations of the W/Z + jets and Top backgrounds are parameters in the global fit.
 - •Single top, diboson sample use the theoretical cross-section.
- •Background contributions are <u>different among channels, regions</u>, <u>and W/Z P_T bins</u>, use global fit to constrain the W/Z+jets and Top.

HCP 2012 review

YAO MING (U. Wisconsin)

8TeV 13.0 fb⁻¹

Aug 15, 2013

8TeV 20.3 fb⁻¹

Higgs fit : One Lepton

Higgs fit : Two Lepton

