Search for associated production $VH(b\bar{b})$ at ATLAS: analysis strategy

Nicolas Morange

DPF Meeting,

August 15, 2013

Why still searching for the Higgs ?

THE UNIVERSITY OF IOWA 2012 at a mass ~ 125 GeV

- Evidence found in bosonic channels only
- Measurement of Higgs properties started, still using bosonic channels
- Coupling to fermions known only indirectly
- Direct evidence for coupling to quarks and leptons very important measurement

Main search channels:

- $= H \rightarrow \tau \tau,$
- $\dashv H \rightarrow b\bar{b},$
- associated production tTH

Current results on $H \rightarrow b\bar{b}$

- Tevatron: $\hat{\mu} = 1.6 \pm 0.7$ (FERMILAB-PUB-13-081-E)
- CMS: excess of 2.1σ , $\hat{\mu} = 1.0 \pm 0.5$ (CMS-PAS-HIG-13-012)
- ATLAS: observed limit 1.8 SM prediction (ATLAS-CONF-2012-161)

$H \rightarrow b\bar{b}$ in associated production

Looking at BR

■ $H \rightarrow b\bar{b}$ largest BR at 125 GeV (~ 60%)

Taking production modes into account

- gg fusion and VBF very difficult channels: large multijet backgrounds
- ⇒ Next is associated production with vector boson (W or Z)
- V boson: easy to trigger, good background rejection
- Total *σ* × BR same ballpark as bosonic channels

Backgrounds

OF IOWA Numerous backgrounds to consider, that will shape the analysis selections

Fake objects

THE

- Fake leptons or MET: multijet
- Mistagged jets: Z+jets, W+jets, with c or light jets

Same objects in the acceptance

- Additional objects out of acceptance: tt
 t t b b in Z(νν)H search...
- Similar final state: Zbb, Wbb, single top, diboson

Critical points of the analysis

Multijet reduction

- Tight leptons in 1 lepton channel
- MET reconstruction in 0 lepton channel

b-tagging

- Advanced MVA-based tagger (impact parameters, secondary vertices): 70% efficiency, rejections of 5 (*c*-jets) and 150 (light jets)
- Precise calibration in $t\bar{t}$ dilepton events

$m_{b\bar{b}}$

- Most discriminant variable
- Resolution improved with *b*-jet energy corrections

Important kinematic variables

- Analysis divided in bins of p_T of vector boson (harder spectra for Higgs): 0-90, 90-120, 120-160, 160-200, >200 GeV
- Angular cuts tuned in each bin

Preselections

Use full 7 TeV (5 fb^{-1}) and 8 TeV (20 fb^{-1}) pp statistics from the 2011 and 2012 runs.

Triggers

- single lepton triggers for 1 and 2 leptons
- dilepton triggers for 2 lepton channel
- E_{T}^{miss} triggers for 0 lepton and 1 lepton (muon)

Selections

Lepton tightness: different quality cuts and isolation

Object	0-lepton	1-lepton	2-lepton				
Lontons	0 loose leptons	1 tight lepton	1 medium lepton				
Leptons		+ 0 loose leptons	+ 1 loose lepton				
		2 b-tags					
Jets	$p_{\rm T}^{\rm jet_1}$ > 45 GeV						
	$p_{\tau}^{\text{jet}_2} > 20 \text{ GeV}$						
		$+ \leq 1$ extra jets					
Missing E-	$E_{T}^{\text{miss}} > 120 \text{ GeV}$	$E_{T}^{miss} > 25 \text{ Gev}$	E_{T}^{miss} < 60 GeV				
MISSING L/	$p_{T}^{\text{miss}} > 30 \text{ GeV}$						
	$\Delta \phi(\mathbf{E}_{T}^{\text{miss}}, \mathbf{p}_{T}^{\text{miss}}) < \pi/2$						
	$\min[\Delta \phi(\mathbf{E}_{\tau}^{\text{miss}}, \text{jet})] > 1.5$						
	$\Delta \phi(\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}, b\bar{b}) > 2.8$						
Vector Boson	-	$m_{\rm T}^W < 120 { m GeV}$	83 <i><m<sub>ll <</m<sub></i> 99 GeV				
Jets Missing <i>E</i> _T Vector Boson	$\begin{array}{c} E_{\rm T}^{\rm miss} > 120 \ {\rm GeV} \\ p_{\rm T}^{\rm miss} > 30 \ {\rm GeV} \\ \Delta \phi({\bf E}_{\rm T}^{\rm miss}, {\bf p}_{\rm T}^{\rm miss}) < \pi/2 \\ \min[\Delta \phi({\bf E}_{\rm T}^{\rm miss}, {\rm jet})] > 1.5 \\ \Delta \phi({\bf E}_{\rm T}^{\rm miss}, b\bar{b}) > 2.8 \\ \end{array}$	$p_T^{-1} > 45 \text{ GeV}$ $p_T^{\text{iet}_2} > 20 \text{ GeV}$ $+ \le 1 \text{ extra jets}$ $E_T^{\text{miss}} > 25 \text{ Gev}$ $m_T^W < 120 \text{ GeV}$	<i>E</i> ^{miss} < 60 GeV 83 < <i>m</i> _{<i>ll</i>} < 99 GeV				

UNIVERSITY OF LOWA Further use of kinematics

The

	p_{T}^{V} [GeV]	0-90	90-120	120-160	160-200	>200
All Channels	$\Delta R(b, \bar{b})$	0.7-3.4	0.7-3.0	0.7-2.3	0.7-1.8	<1.4
1-lenton	E _T ^{miss} [GeV]		>50			
I lepton	$m_{\rm T}^W$ [GeV]	40-120 <12				0

- 0-lepton: 2.2 %
- 1-lepton: 3.5 %
- 2-lepton: 8.2 %

S/B in mass window 90-150 GeV

• 0.1% to 2%, depending on p_T^V bin.

0 lepton

- Zbb main background
- tt and Wbb also important

1 lepton

- tt main background
- Single top and Wbb also sizeable
- Multijet important at low p_{T}^{V} .

10/17

2 leptons

- Zbb main background
- Some contribution from tt

Categorization

UNIVERSITY OF IOWA Complex analysis, divided into numerous categories

- Signal Regions (SR): $m_{b\bar{b}}$ used as discriminant variable
- Control Regions (CR): only total yields used

Channel	Nb p_{T}^{V} bins	2jets, 1tag	3jets, 1tag	2jets, 2tags	3jets, 2tags	e - μ CR
0-lepton	3	CR	CR	SR	SR	-
1-lepton	5	CR	CR	SR	SR	-
2-lepton	5	CR	CR	SR	SR	CR

• $e - \mu$ CR: 1 electron, 1 muon, $m_{\ell\ell} > 40$ GeV

SR: 1lep, 2tag 2jet, $90 < p_T^V < 120$ GeV

- One fit containing all categories. Wait for next talk for details !
- Needs careful evaluation of modelling systematics

THE

Background Modelling: V+jets

V+**jets**

- Mismodelling of Δφ(jj) found in 0-tag regions
- ⇒ Correction derived and applied
- Consistent with NLO studies
- Improves agreement in all distributions, incl. p_T^V.
- Normalizations of W+hf, Wcl, Z+hf, Zcl floated in the fit hf=bb+bc+cc

W+jets $\Delta \phi$ after correction

W+jets p_{τ}^{V} after $\Delta \phi$ correction

N. Morange (U. of Iowa)

Multijets

- 0 lepton
 - Control regions from inversion of some E_{τ}^{miss} cuts
 - Normalization and shapes from the CR
- 1 lepton
 - Shape from CR with inverted lepton isolations
 - Normalizations from the fit
- 2 lepton
 - Estimated in sidebands of m_{ll}
 - Found negligible

tī

- Correction of top p_T at generator level
- Normalization floated in the fit

Diboson, single top

Normalizations and shapes from MC

Signal

- Renormalization and factorization scales, PDF (3.5%)
- p_T^V dependence of NLO EW corrections (up to 2.6%)
- Acceptance (comparison LO generators): 10 %
- Total uncertainty ~ 14 %

Backgrounds

- Numerous categories of the analysis
 ⇒ need to get m_{bb}, p_T^V,
 3-to-2 jet ratios and
 flavour compositions right.
 More on this in the next
 talk !
- Systematics on p_T^V through $\Delta \phi$ for V+jets
- MC-based systematics: comparisons of generators LO or NLO, UE/PS tunes, renormalization scales

	m _{bb}	$\Delta \phi$	p_{T}^{V}	3-to-2-jet ratio	flav. compo.
tŦ	MC	-	data	MC	-
Z+jets	data	data	-	MC	MC
W+jets	MC	data	data	MC	MC
Single top	MC	-	MC	MC	-
Diboson	MC	-	MC	MC	-

Sources of Experimental systematics

Complex final state and categorization

Lepton systematics

- Lepton reconstruction/identification efficiencies
- Lepton energy scales

Jet systematics

- Jet Energy Scale systematics: shift m_{bb̄} but also 3-to-2 jets ratios and p^V_T bins (E^{miss}_T)
- Jet Energy Resolution: affect m_{bb} shapes

b-tagging systematics

- Affect flavour compositions in 1tag and 2tag regions
- Precise calibration in tt events
- Larger uncertainty for fake rates (c and light)
- Additional systematics for V+jets

Results

UNVERTY OF IOWA OF IOWA OF IOWA

Fit using profile likelihood

- All systematics treated as nuisance parameters in the fit
- Background normalizations: floated or treated as additional nuisance parameters
- Postfit MC data agreement obtained in the 26 SR and 31 CR

Observation of diboson peak

- Extensive validation of modelling and fit: WZ+ZZ as signal
- Diboson peak observed with 4.8 σ , $\sigma/\sigma_{SM} = 0.9 \pm 0.2$

Higgs search

- Very small excess μ_H = 0.2±0.5(stat)±0.4(syst)
- Observed limit 1.4 \sigma_{SM}, 1.3 expected in absence of signal

16/17

Conclusions

- First ATLAS results on search for $VH(b\bar{b})$ with full 2011+2012 dataset (ATLAS-CONF-2013-079)
- Search in 3 channels $Z(\nu\nu)H$, $Z(\ell^+\ell^-)H$, $W(\ell\nu)H$
- Further splitting into p^V_T categories, 2 jet and 3 jet categories
- Price is complex fit model, detailed in next talk
- ⇒ Optimizations and reduced syst. uncertainties give 35 % improvement wrt previous analysis, not counting lumi. increase
- This is not the final ATLAS result on this channel ! Stay tuned for further improvements.

Additional material

N. Morange (U. of Iowa)

Higgs production

THE UNIVERSITY

Xiv:1207.5030

4/11

- Lots of information on backgrounds and b-tagging in CR
- Needs careful evaluation of modelling systematics

Process

tī

Wb

Wcl

Zb

Zcl

Scale factor

 1.13 ± 0.05

 0.89 ± 0.15

 1.05 ± 0.14

 1.30 ± 0.07

 0.89 ± 0.48

Profile likelihood

- All systematics treated as nuisance parameters in the fit
- Background normalizations: floated or treated as additional nuisance parameters
- Postfit MC data agreement obtained in the 26 SR and 31 CR, both normalizations and shapes

Example: highest sensitivity bins

Uncertainties still dominated by statistics

7/11

An important check

- WZ+ZZ as signal
- Higgs at 125 GeV treated as background
- Very good check of validity of modelling and fit
- Measure $\mu_{VZ} = \sigma/\sigma_{SM} = 0.9 \pm 0.1(\text{stat}) \pm 0.2(\text{syst})$
- Significance 4.8σ (5.1σ expected)
- Compatibility between years:
 - $\mu_{VZ} = 0.7 \pm 0.5 \text{ in } 2011$
 - $\mu_{VZ} = 1.0 \pm 0.2$ in 2012

Diboson results

Higgs results

9/11

- **2** σ deficit in 7 TeV data
- Observed in previous analysis

8 TeV

7 TeV

UNIVERSITY OF IOWA

• $\sim 1\sigma$ excess in 8 TeV data

Combination

- Result is a very small excess
- $\mu_H = 0.2 \pm 0.5 (\text{stat}) \pm 0.4 (\text{syst})$
- Compatible with both $\mu = 0$ and $\mu = 1$
- Observed limit 1.4 \sigma_{SM}, 1.3 expected in absence of signal

More Higgs results

Higgs combination

