Searching for Sterile Neutrinos and CP Violation: The IsoDAR and DaeΔalus Experiments

Mike Shaevitz - Columbia University
Daeðalus and IsoDAR Experiments
("Cyclotrons as Drivers for Precision Neutrino Measurements" - arXiv:1307.6465)

IsoDAR Setup:
Very short baseline search for sterile neutrinos
A. Bungau et al., PRL 109, 141802 (2012)

Daeðalus Setup:
A new way to search for CP violation in the ν-sector
DAEδDALUS High Power (~1 MW) 800 MeV Cyclotron System
(Under Development with Lab and Industrial Partners)

- **H$_2^+$ Ion Source**
- **Daeδalus DAR Target-Dump (about 6x6x9 m3)**

- **IsoDAR Cyclotron**
- **Injector Cyclotron (Resistive Isochronous)**
- **Ring Cyclotron (Superconducting)**

“Isochronous cyclotron” where mag. field changes with radius, but RF does not change with time. This can accelerate many bunches at once.

- **Multimegawat Daeδalus Cyclotron for Neutrino Physics**

arXiv:1207.4895
Current Accomplishments and Status
International Partnership Between Universities, Labs, and Industry

• Ion source developed by collaborators at INFN Catania
 – Reached adequate intensities for the system

• Ion Source Beam currently being characterized at Best Cyclotrons, Inc, Vancouver
IsoDAR Experiment

Isotope Decay-at-Rest Neutrino Source ($\bar{\nu}_e$ Disappearance)
to Search for Sterile Neutrinos
Many Experimental Hints for Sterile Neutrinos

- MiniBooNE/LSND $\nu_e / \bar{\nu}_e$ appearance signals

![Diagram showing $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ transition]

- Reactor Anomaly: $\bar{\nu}_e$ disappearance signals?

![Diagram showing $\bar{\nu}_e \rightarrow \bar{\nu}_s$]

Data sets indicate a high Δm^2

Can be fit by introducing a new ν, ...but it must be non-interacting (sterile!)

$\Delta m^2_{\text{sterile}} \sim 1 \text{eV}^2$

These signals are at the 2-4σ level \Rightarrow Need new “definitive” experiments

Establishing the existence of sterile neutrinos would be a major result for particle physics
Probing $\Delta m^2 \sim 1 \text{ eV}^2$ Oscillations
Short and Very-short Baseline Oscillation Experiments

\(\nu\) - Source
- Radioactive Source
- Isotope Source
- Reactor Source
- Proton into Dump Source

\(\nu\) - Detector

- Many ideas and neutrino sources:
 - Reactor sources
 - Radioactive sources
 - Isotope sources
 - π / K decay-at-rest sources
 - π decay-in-flight sources
 - Low-energy ν-Factory source

- Need definitive experiments
 - Significance at the $> 5\sigma$ level
 - Smoking gun: Observation of oscillatory behavior within detector

- Several directions for next generation accelerator experiments
 - Multi-detector accelerator neutrino beam experiments
 - Very short baseline (VSBL) experiments with compact neutrino sources

Light Sterile Neutrinos: A White Paper
Overview IsoDAR $\bar{\nu}_e$ Disappearance Exp

- High intensity $\bar{\nu}_e$ source using β-decay at rest of ^8Li isotope \(\Rightarrow\) IsoDAR

- ^8Li produced by high intensity (10ma) proton beam from 60 MeV cyclotron \(\Rightarrow\) being developed as prototype injector for DAE\(\delta\)ALUS cyclotron system

- Put a cyclotron-isotope source near one of the large (kton size) liquid scintillator/water detectors such as KAMLAND, SNO+, Borexino, Super-K….

- Physics measurements:
 - $\bar{\nu}_e$ disappearance measurement in the region of the LSND and reactor-neutrino anomalies.
 - Measure oscillatory behavior within the detector as a function of L and E.

arXiv:1205.4419
IsoDAR Neutrino Source and Events

- \(p \ (60 \text{ MeV}) + ^9\text{Be} \rightarrow ^8\text{Li} + 2p \)
 - plus many neutrons since low binding energy

- \(n + ^7\text{Li} \) (shielding) \(\rightarrow ^8\text{Li} \)

- \(^8\text{Li} \rightarrow ^8\text{Be} + e^- + \bar{\nu}_e \)
 - Mean \(\bar{\nu}_e \) energy = 6.5 MeV
 - \(2.6 \times 10^{22} \bar{\nu}_e / \text{yr} \)

- Example detector: Kamland (900 t)
 - Use IBD \(\bar{\nu}_e + p \rightarrow e^+ + n \) process
 - Detector center 16m from source
 - \(\sim 160,000 \) IBD events / yr
 - 60 MeV protons @ 10ma rate
 - Observe changes in the IBD rate as a function of L/E

arXiv:1205.4419
Currently working with the Kamland collaboration on the details of siting and installation of the cyclotron, beamline, and neutrino source.
IsoDAR $\bar{\nu}_e$ Disappearance Oscillation Sensitivity (3+1)
IsoDAR Measurement Sensitivity

\[\Delta m^2 \text{ (eV}^2) \]

95\% CL Allowed Regions

IsoDAR 5\% Limit

IsoDAR 1\% and 5\% contours

Cribier et al. 5\% Limit

\[\sin^2 2\theta_{\text{new}} \]
IsoDAR’s high statistics and good L/E resolution has potential to distinguish (3+1) and (3+2) oscillation models.
IsoDAR Also Has Excellent Electroweak Measurement Sensitivity \((\bar{\nu}_e + e^- \rightarrow \bar{\nu}_e + e^-)\)

- 5yr data \(\Rightarrow\) 7200 evts with \(E_{\text{vis}}>3\text{MeV}\)
 \(\Rightarrow\) IsoDAR@Kamland:
 \[\delta\sin^2\theta_W = 0.0075\ (\sim 3\%)\]
 - Would be the best \(\bar{\nu}_e e\) (or \(\nu_e e\)) elastic scattering measurement

- Precision neutrino-electron scattering can also probe Non-Standard Interactions (NSI) since it is a well-understood Standard Model process

\[
g_L \rightarrow g_L + \epsilon_{ee}^L \quad g_R \rightarrow g_R + \epsilon_{ee}^R
\]
DAEδDALUS Experiment

Search for CP Violation using $\bar{\nu}_e$ Appearance with a Pion Decay-at-Rest Neutrino Beam
Use L/E Dependence of $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ to Measure δ_{CP}

\[
P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e) = (\sin^2 \theta_{23} \sin^2 2\theta_{13}) (\sin^2 \Delta_{31})
+ \sin \delta (\sin 2\theta_{13} \sin 2\theta_{23} \sin 2\theta_{12}) (\sin^2 \Delta_{31} \sin \Delta_{21})
+ \cos \delta (\sin 2\theta_{13} \sin 2\theta_{23} \sin 2\theta_{12}) (\sin \Delta_{31} \cos \Delta_{31} \sin \Delta_{21})
+ (\cos^2 \theta_{23} \sin^2 2\theta_{12}) (\sin^2 \Delta_{21}).
\]

We want to see if δ is nonzero.

Terms depending on mixing angles

Terms depending on mass splittings

$\Delta_{ij} = \Delta m^2_{ij} L / 4E_\nu$
Use Multiple Neutrino Sources at Different Distances to Map Out $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ Appearance Rate
Osc. maximum

\[\delta = \pi/2 \]

\[\delta = 0 \]

Constrains rise of probability wave

Constrains flux

Single Ultra-large Detector With Free Protons as IBD ($\bar{\nu}_e + p \rightarrow e^+ + n$) Targets (Oil or Water)

Near Neutrino Source

Mid-distance Neutrino Source

Far Neutrino Source

\(8 \text{ km}\)

\(20 \text{ km}\)
The diagram illustrates the neutrino oscillation probability as a function of oscillation parameters and distance from the neutrino source. The oscillation probability is shown on the y-axis, with δ = π/2 and δ = 0 as critical points.

- **Constrains Initial flux**:
 - Neutrino emission from the source.

- **Constrains rise of probability wave**:
 - The probability wave rises significantly.

- **Osc. maximum at ~40 MeV**:
 - Maximum oscillation probability.

The diagram also shows three identical beams from near, mid-distance, and far neutrino sources. The near source is at 8 km, mid-distance is at 10 km, and far is at 20 km. The flux is depicted on an energy scale, with ν_e and ν_μ waveforms.
Constrains
Initial flux

Constrains rise
of probability
wave

Osc. maximum

Near Neutrino Source

Mid-distance Neutrino Source

Far Neutrino Source

You need to know which one is providing the beam. So they have to turn on/off.

\[\nu_\mu \rightarrow \nu_e \]
Where can DAEδALUS run?

Hyper-K (or initially, Super-K)

Focus for current studies

LENA - Scintillator Detector

MEMPHYS
CP Violation Sensitivity

- Daeδalus has good CP sensitivity as a stand-alone experiment.
 - Small cross section, flux, and efficiency uncertainties
- Daeδalus can also be combined with long baseline ν-only data to give enhanced sensitivity, i.e. Hyper-K
 - Long baseline experiments have difficulty obtaining good statistics for $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ which Daeδalus can provide
 - Daeδalus has no matter effects and can help remove ambiguities.
δ_{CP} Sensitivity Compared to Others
Comparison of δ_{CP} Measurement Uncertainties

$\Delta \delta$ at 1σ
$\theta_{23}=40^\circ$

Fraction of δ

$\Delta \delta$[$^\circ$]

From: P. Huber
Globes 2013
Final Comments

• High-power (~1MW) class cyclotrons are becoming a reality
 – For physics, they can provide high intensity neutrino sources
 – Important industrial interest for medical isotope production
 – Other applications in connection with accelerator driven reactors (ADS)

• Establishing the existence of sterile neutrinos would be a major result for particle physics
 – IsoDAR can make a definitive search for sterile neutrinos
 • Combined L and E analysis with good resolutions can isolate the oscillatory behavior and reduce backgrounds

• Daeðalus is another method to probe for CP violation in the ν-sector
 – Can provide high statistics $\bar{\nu}_e$ data with no matter effects and reduced systematic uncertainties
 – Can give enhanced sensitivity when combined with long baseline ν_e appearance data
Backup
δ_{CP} Discovery Potential
(exclude 0^0 and 180^0 with σ significance in 10yrs)

(34 kton)
Elastic Scattering \Rightarrow Measure $\sin^2 \theta_W$

- NuTeV weak mixing angle measurement using neutrino neutral current scattering differs from expectation by 3σ
 - Is there something special with neutrinos or difficulty in NuTeV analysis?

\Rightarrow Use IsoDAR/Kamland to measure $\sin^2 \theta_W$ with pure lepton process antineutrino-electron elastic scattering: $\bar{\nu}_e + e \rightarrow \bar{\nu}_e + e$
Detect $\bar{\nu}_e$ Events using Inverse Beta Decay (IBD)

- Scintillator or Gd-doped water detector
- prompt positron signal followed by neutron capture
- $E_{\bar{\nu}_e} \approx E_{\text{prompt}} + 0.78$ MeV
Kamland Backgrounds to $\bar{\nu}_e$e Signal

- Backgrounds are large since signal is single outgoing electron
- Visible energy is low since outgoing $\bar{\nu}_e$ takes away energy

From L. Winslow

Use large sample of IBD events to constrain normalization to 0.2%

Cuts:
- $E_{\text{vis}} > 3$ MeV
- θ (to source) < 25°
⇒ Reduce isotropic bkgnd by x2

$E_\nu = 8$ MeV