Charmless 3-body decays of b-hadrons

Thomas Latham (on behalf of the LHCb collaboration)

15th August 2013

DPF 2013 - University of California, Santa Cruz

THE UNIVERSITY OF WARWICK

Overview

- Introduction
- Experimental results
 - $B^+ \longrightarrow h^+ h^+ h^-$
 - $B^+ \longrightarrow p \ \overline{p} \ h^+$
 - $B^0 \longrightarrow h^+ h^- \pi^0$
 - $B_{(s)}^{0} \longrightarrow K_{s} h^{+} h^{-}$
- Conclusion

Santa Cruz

TownMapsUSA.com

Why charmless decays?

- Contributions from both loop (penguin) and tree decay diagrams
- These diagrams have a relative weak phase (= γ in SM)
- Interference can therefore give rise to direct CP violation
- In neutral B decays can make time-dependent measurements, allowing measurements of mixing-induced CP asymmetries
- These can be compared with measurements from, e.g. $B^0 \rightarrow J/\psi$ KS or $B_s \rightarrow J/\psi \phi$ to search for signs of new physics

Phys. Rev. Lett. 110, 221601 (2013)

 $B^0 \longrightarrow K^+\pi^-$ and $B_s \longrightarrow K^-\pi^+$

Phys. Rev. Lett. 110, 221601 (2013)

$$B^0 \rightarrow K^+\pi^-$$
 and $B_s \rightarrow K^-\pi^+$

• First observation (6.5 σ) of CP violation in B_s system:

$$A_{CP}\left(B_{s} \rightarrow K^{-}\pi^{+}\right) = \frac{\Gamma\left(\overline{B}_{s} \rightarrow K^{+}\pi^{-}\right) - \Gamma\left(B_{s} \rightarrow K^{-}\pi^{+}\right)}{\Gamma\left(\overline{B}_{s} \rightarrow K^{+}\pi^{-}\right) + \Gamma\left(B_{s} \rightarrow K^{-}\pi^{+}\right)} = \underbrace{0.27 \pm 0.04 \,(\text{stat.}) \pm 0.01 (\text{syst.})}_{0.01}$$

• Also world's best single measurement of:

$$A_{CP}(B^0 \rightarrow K^+ \pi^-) = -0.080 \pm 0.007 (\text{stat.}) \pm 0.003 (\text{syst.})$$

- Results consistent with world averages and previous LHCb measurements
- Also appear consistent with the Standard Model (Δ =0):

$$\Delta = \frac{A_{CP} \left(B^0 \to K^+ \pi^- \right)}{A_{CP} \left(B^0_s \to K^- \pi^+ \right)} + \frac{BF \left(B^0_s \to K^- \pi^+ \right)}{BF \left(B^0 \to K^+ \pi^- \right)} \frac{\tau_d}{\tau_s} = \frac{-0.02 \pm 0.05 \pm 0.04}{-0.02 \pm 0.05 \pm 0.04}$$

15/08/2013

PLB 492, 297 (2000)

Why 3-body decays?

- Source of strong phase differences in 2-body decays not well understood
- Interferences between intermediate states in 3-body decays allows the measurement of relative phases as well as magnitudes
- Provides additional information to better constrain theoretical models
- Can also help to resolve trigonometric ambiguities in weak phase measurements

Toy MC Dalitz plot (DP)

$B^+ \rightarrow h^+ h^+ h^-$ decays

Introduction

- Searches for direct CP violation in $B^+ \longrightarrow h^+ \, h^-$ decays are motivated by
 - Evidence for large CPV in $B^+ \rightarrow \rho^0 K^+$ from both Belle and BaBar [Phys. Rev. Lett. 96, 251803 (2006); Phys. Rev. D 78, 012004 (2008)]
 - Recent evidence of CPV in $B^+ \rightarrow \phi K^+$ from BaBar [Phys. Rev. D 85, 112010 (2012)] (see talk tomorrow morning by J. Albert)
 - Large A_{CP} measurements in $B^0 \longrightarrow K^+\pi^-$ and $B_s \longrightarrow K^-\pi^+$
- The three-body environment will allow a clearer understanding of the strong phases via amplitude analysis
- First step is to establish the level of CPV and its variation over the phase space, represented by the Dalitz plot

arXiv:1306.1246 [hep-ex] Accepted by Phys. Rev. Lett.

CPV in $B^+ \longrightarrow K^+ h^+ h^-$

- Analysis uses 1 fb⁻¹ data from 2011 (~ ¹/₃ of total LHCb data sample)
- Measure raw asymmetry from simultaneous mass fit to B⁺ and B⁻ candidate samples, defining

$$A_{\rm raw} = \frac{N_{B^-} - N_{B^+}}{N_{B^-} + N_{B^+}}$$

• Must be corrected for production and detection asymmetries:

$$\mathsf{A}_{\mathsf{CP}} = \mathsf{A}_{\mathsf{raw}} - \mathsf{A}_{\mathsf{D}}(\mathsf{K}^{\pm}) - \mathsf{A}_{\mathsf{P}}(\mathsf{B}^{\pm})$$

• Use the decay $B^+ \rightarrow J/\psi \ (\mu^+\mu^-) \ K^+$ to determine this:

$$A_{D}(K^{\pm}) + A_{P}(B^{\pm}) = A_{raw}(J/\psi K^{+}) - A_{CP}(J/\psi K^{+})$$

• Where:

$$A_{CP}(J/\psi K^{+}) = (0.1 \pm 0.7)\%$$

PRD 86, 010001 (2012)

- $A_{CP}(B^+ \longrightarrow K^+ \pi^+ \pi^-) = 0.032 \pm 0.008 \text{ (stat.)} \pm 0.004 \text{ (syst.)} \pm 0.007 \text{ (J/}\psi \text{ K}^+)$
- Significance of CPV = 2.8σ
- $A_{CP}(B^+ \rightarrow K^+ K^-) = -0.043 \pm 0.009 \text{ (stat.)} \pm 0.003 \text{ (syst.)} \pm 0.007 \text{ (J/}\psi K^+)$
- Significance of CPV = 3.7σ
- The third uncertainty is due to the J/ ψ K⁺ CP asymmetry measurement

arXiv:1306.1246 [hep-ex] Accepted by Phys. Rev. Lett.

CPV in $B^+ \longrightarrow K^+ h^+ h^-$

- Study variation of A_{raw} over Dalitz plot
- Some areas of phase space have very large asymmetries, e.g. region around ρ^0 resonance in B⁺ \rightarrow K⁺ $\pi^+ \pi^-$ but also regions not clearly associated with a resonance, particularly in B⁺ \rightarrow K⁺ K⁺ K⁻

arXiv:1306.1246 [hep-ex] Accepted by Phys. Rev. Lett.

CPV in $B^+ \longrightarrow K^+ h^+ h^-$

- Study variation of A_{raw} over Dalitz plot
- Some areas of phase space have very large asymmetries, e.g. region around ρ^0 resonance in B⁺ \rightarrow K⁺ $\pi^+ \pi^-$ but also regions not clearly associated with a resonance, particularly in B⁺ \rightarrow K⁺ K⁺ K⁻

Comparison

arXiv:1305.4218 [hep-ex] & LHCb-CONF-2012-018

between experiments

- Distributions of $A_{CP}(B^+ \longrightarrow K^+ K^-)$ as function of K^+K^- invariant mass
- Show very similar shapes
- Slight offset (left) 0.045 ± 0.021, (right) 0.053 ± 0.021
- However, NB that LHCb numbers are A_{raw} not A_{CP} , so discrepancy is reduced (< 2σ) once this is accounted for
- See talk tomorrow morning by J. Albert for more details

CPV in $B^+ \longrightarrow \pi^+ h^+ h^-$

- Similar patterns seen in $B^+ \longrightarrow \pi^+ h^+ h^-$ decays
- Large localised asymmetries, not necessarily associated with a resonance
- Again, asymmetries have opposite sign between the two modes
- Possible that $\pi\pi \leftrightarrow$ KK rescattering is playing a role in generating the strong phase difference
- Amplitude analyses of these modes crucial to understand these effects in more detail

$B^+ \longrightarrow p \ \overline{p} \ h^+ \ decays$

Introduction

- Motivated by:
 - Large CPV seen in $B^+ \longrightarrow h^+ h^- h^-$
 - Is rescattering playing a significant role in those modes?
 - Since h⁺h⁻ ↔ pp̄ expected to be smaller than π⁺π⁻ ↔ K⁺K⁻, would therefore expect smaller CPV here
 - Threshold enhancements seen in many B decays to a baryon anti-baryon pair plus meson(s) – want to better understand the dynamics of such decays
 - Interesting also to study charmonium contributions, see previous LHCb analysis [Eur. Phys. J. C73, 2462 (2013)]
- Measure decay dynamics and A_{CP} in regions of the phase space
- Analysis uses 1.0 fb⁻¹ of 2011 data

Signal Yields

- Perform fits to B-candidate invariant mass distribution
- Model includes components for signal, cross-feed, combinatorial and partially-reconstructed backgrounds
- As expected, smaller yield for the pion mode, also with larger background

CP Asymmetries

- Perform simultaneous fits to B⁺ and B⁻ samples, globally and in bins of the pp and Kp invariant masses
- No significant asymmetry seen in any phase space region

Decay Dynamics

- Differential production spectra show clear enhancements towards threshold in the protonantiproton invariant mass
- The enhancement is more extreme for $p\bar{p}\pi$

Decay Dynamics

- Differential production spectra also calculated as a function of the angle between the meson and the opposite-sign baryon in the pp rest frame
- Striking opposite behaviour for the two decay modes:

$B^+ \longrightarrow \overline{\Lambda}(1520) p$

 Background subtracted plots are created using the sPlot technique

NIM A555, 356 (2005)

- Low pp invariant mass enhancement and charmonium bands clearly visible
- Can also see some enhancement at low Kp invariant mass
- Lower plot shows this projection
- 2D fit to m_{Kp} and m_B performed to extract yield of resonance contribution
- Significance of 5.1o
- Branching fraction measured to be $m_{K_p} [GeV/c^2]$ $BF(B^+ \rightarrow \overline{\Lambda}(1520)p) = \left(3.9 \begin{array}{c} +1.0 \\ -0.9 \end{array} (stat.) \pm 0.1 (syst.) \pm 0.3 (BF)\right) \times 10^{-7}$

$B^0 \longrightarrow h^+ h^- \pi^0$ decays

Phys.Rev. D87 091101 (2013)

Evidence for $B^0 \longrightarrow K^+ K^- \pi^0$

- Analysis uses data sample of 772 million BB pairs
- 299 ± 83 signal events
- Significance of 3.5σ
- BF(B⁰ \rightarrow K⁺ K⁻ π^{0}) = (2.17 ± 0.60 ± 0.24) × 10⁻⁶
- See talk this afternoon by Y. Kwon for more details

$B^0 \longrightarrow \pi^+ \, \pi^- \, \pi^0$

- Time-dependent Dalitz-plot analysis
- Aim to measure CKM angle α using Snyder-Quinn method [Phys. Rev. D 48, 2139 (1993)]
- Scan for α found not to be robust with current statistics
- However, extraction of direct CPV parameters is robust
- Consistency with no direct CP violation: $\Delta \chi^2 = 6.42$
- See talk this afternoon by T. Miyashita for more details

$$B_{(s)}^{0} \longrightarrow K_{s} h^{+} h^{-}$$
 decays

Introduction

- Time-dependent flavourtagged DP analyses sensitive to mixinginduced CP-violating phases
 - e.g. recent BaBar measurement:
 - $\beta_{eff}(\phi K_s) = (21 \pm 6 \pm 2)^{\circ}$ in the decay $B^0 \longrightarrow K_s K^+ K^-$

[Phys. Rev. D 85, 112010 (2012)]

 See talk tomorrow morning by J. Albert for more details of this and other 3K DP analyses

Decay	Observed?	Favoured?
${\rm B}^{0} \longrightarrow {\rm K}_{\rm S}\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$	\checkmark	\checkmark
$B^0 \longrightarrow K_S \ K^{\pm} \ \pi^{\scriptscriptstyle \mp}$	\checkmark	×
${\rm B}^{0} \longrightarrow {\rm K}_{\rm S} \; {\rm K}^{\scriptscriptstyle +} \; {\rm K}^{\scriptscriptstyle -}$	\checkmark	\checkmark
$B_s \longrightarrow K_s \pi^+ \pi^-$	×	×
$B_{s} \longrightarrow K_{S} \: K^{\pm} \: \pi^{\mp}$	×	\checkmark
$B_s \longrightarrow K_s K^+ K^-$	×	×

- Such an analysis not possible with current LHCb statistics
- First step is to search for the three previously unseen B_s decays

arXiv:1307.7648 [hep-ex] Submitted to JHEP

Analysis Method

- Analysis uses 1.0 fb⁻¹ of 2011 data
- Selection optimised separately for favoured and suppressed decays
- K_s decays to $\pi^+ \pi^-$ divided into two categories:
 - Long: pion tracks have hits in the vertex detector (VELO)
 - Downstream: pion tracks have no VELO hits

arXiv:1307.7648 [hep-ex] Submitted to JHEP

Favoured-mode selection

arXiv:1307.7648 [hep-ex] Submitted to JHEP

Suppressed-mode selection

Branching fractions

- Branching fractions measured with respect to the decay $B^0 \longrightarrow K_{S} \, \pi^{\scriptscriptstyle +} \, \pi^{\scriptscriptstyle -}$
 - World average value BF = $(2.48 \pm 0.10) \times 10^{-5}$

$$\begin{split} &\frac{\mathcal{B}(B^0 \to K^0_{\rm S} K^{\pm} \pi^{\mp})}{\mathcal{B}(B^0 \to K^0_{\rm S} \pi^{+} \pi^{-})} &= 0.128 \pm 0.017 \, ({\rm stat.}) \pm 0.009 \, ({\rm syst.}) \,, \\ &\frac{\mathcal{B}(B^0 \to K^0_{\rm S} \pi^{+} \pi^{-})}{\mathcal{B}(B^0 \to K^0_{\rm S} \pi^{+} \pi^{-})} &= 0.385 \pm 0.031 \, ({\rm stat.}) \pm 0.023 \, ({\rm syst.}) \,, \\ &\frac{\mathcal{B}(B^0_s \to K^0_{\rm S} \pi^{+} \pi^{-})}{\mathcal{B}(B^0 \to K^0_{\rm S} \pi^{+} \pi^{-})} &= 0.29 \, \pm 0.06 \, ({\rm stat.}) \pm 0.03 \, ({\rm syst.}) \pm 0.02 \, (f_s/f_d) \,, \\ &\frac{\mathcal{B}(B^0_s \to K^0_{\rm S} \pi^{+} \pi^{-})}{\mathcal{B}(B^0 \to K^0_{\rm S} \pi^{+} \pi^{-})} &= 1.48 \, \pm 0.12 \, ({\rm stat.}) \pm 0.08 \, ({\rm syst.}) \pm 0.12 \, (f_s/f_d) \,, \\ &\frac{\mathcal{B}(B^0_s \to K^0_{\rm S} K^{+} K^{-})}{\mathcal{B}(B^0 \to K^0_{\rm S} \pi^{+} \pi^{-})} &\in [0.004; 0.068] \, {\rm at} \, 90\% \, {\rm CL} \,. \end{split}$$

Summary

- A wealth of charmless 3-body decay modes under study
 - Exciting new direct CP violation results in $B^+ \longrightarrow h^+ h^+ h^-$
 - Interesting puzzles in $B^+ \rightarrow p\overline{p}h^+$ decay dynamics
 - First evidence of $B^0 \longrightarrow K^+K^-\pi^0$
 - Improved measurements of mixing-induced and direct CP violation in $B^0 \rightarrow \varphi K_s$ and $B^0 \rightarrow \rho \pi$
 - First observations of B_s decays to $K_s\pi\pi$ and $K_sK\pi$
- Many exciting results to come
 - B-factories updating results to final dataset and studying new modes
 - LHCb embarking on amplitude analyses using the combined 2011 + 2012 (1 fb⁻¹ + 2 fb⁻¹) dataset
 - Decays of b-baryons (e.g. Λ_{b} & $\Xi_{b})$ also being studied
- Watch this space!

Backup Slides

~90% efficient for dimuons