New measurements of reactor $\bar{\nu}_{e}$ disappearance with the Double Chooz far detector

Rachel Carr, Columbia University on behalf of the Double Chooz collaboration DPF | UC Santa Cruz | August 16, 2013 I. Experiment overview

II. Latest Double Chooz results

- Reactor-off background measurements
- First combined Gd+H fit
- Reactor rate modulation analysis

III. Future of Double Chooz

I. Experiment overview

II. Latest Double Chooz results

- Reactor-off background measurements
- First combined Gd+H fit
- Reactor rate modulation analysis

III. Future of Double Chooz

Double Chooz collaboration

					<u></u>	
Brazil CBPF UNICAMP UFABC	France APC CEA/DSM/IRFU: SPP SPNN SEDI SIS SENAC CNR5/IN2P3: Subatech IPHC ULB/VUB	Germany EKU Tübingen MPIK Heidelberg RWTH Aschen TU München U. Hamburg	Japan Tohoku U. Tokyo I. T. Tokyo Metro. U. Niigata U. Kobe U. Tohoku Gakuin U. Hiroshima I. T. P3) Project manag	Russia INR RAS IPC RAS RRC Kurchatov	Spain CIEMAT-Madrid	United States U. Alabama ANL U. Chicago Columbia U. UC Davis UCLA Drexel U. U. Hawaii IIT Kansas State LLNL MIT U. Notre Dame SNL U. Tennessee
Rachel Carr (Columbia	a University)	Dou	ble Chooz for DPF 20)13	_	3 / 27

Double Chooz experiment

Designed to measure sin² $2\theta_{13}$ via reactor $\bar{\nu}_e$ disappearance: $P_{\bar{\nu}_e \to \bar{\nu}_e} = 1 - \sin^2 2\theta_{13} \sin^2 (1.27 \Delta m_{31}^2 L/E)$

 $[\Delta m_{31}^2] = eV^2, [L] = m, [E] = MeV$

Rachel Carr (Columbia University)

Double Chooz for DPF 2013

Site layout

Near detector

Overburden \approx 120 mwe Ready in mid-2014

leactors

Two N4-type PWRs, 4.25 GW_{th} each

Far detector

Overburden \approx 300 mwe Operating since April 2011

Inverse β decay signal

Inner detector:

Neutrino target Gd-doped liquid scintillator (8.3 tons)

Inner detector:

Neutrino target Gd-doped liquid scintillator (8.3 tons)

Gamma catcher Undoped liquid scintillator (18 tons)

Inner detector:

Neutrino target Gd-doped liquid scintillator (8.3 tons)

Gamma catcher Undoped liquid scintillator (18 tons)

Buffer Non-scintillating mineral oil (80 ton

390 PMTs installed on stainless steel tank

Cosmic ray veto systems:

Inner veto Undoped liquid scintillator (70 tons) + 78 PMTs

Cosmic ray veto systems:

Inner veto Undoped liquid scintillator (70 tons) + 78 PMTs

Outer veto Array of plastic scintillator strips 13 m \times 7 m

Calibration

- Source deployments: ¹³⁷Cs, ⁶⁸Ge, ⁶⁰Co, ²⁵²Cf
 - Z-axis
 - Guide tube
 - Fall 2013: Articulated arm
- Spallation neutrons generated by cosmic rays
- LED injection system

Energy reconstruction

▶ $q \rightarrow PE$, correcting for gain nonlinearity $PE \rightarrow MeV$, using H capture peak

 Correction for time instability, using Gd capture peak variation

 Correction for detector inhomogeneity, using H capture map

... Final energy scale uncertainty: 1-2%

Signal selection

Parameter	Gd selection	H selection
E _{prompt}	0.7 – 12.2 MeV	0.7 – 12.2 MeV
E _{delayed}	6.0 – 12.0 MeV	1.5 – 3.0 MeV
ΔT	2 – 100 <i>µ</i> s	10 – 600 μs
ΔR	——————————————————————————————————————	< 90 cm

Further requirements for background reduction:				
Parameter	Gd selection	H selection		
Multiplicity	No additional triggers in 500 μs surrounding prompt	No additional triggers in 1600 μs surrounding prompt		
Muon veto	No muon in ID or IV in 1 ms before prompt			
Showering	No muon depositing > 600 MeV			
muon veto	in 0.5 s before prompt			
OV veto	No OV hit coincident with prompt			
Light noise rejection	Passes cuts on PMT charge isotropy and pulse simultaneity			

Predicted no-oscillation signal in April 2011–March 2012 dataset: **Gd selection: 8,440 H selection: 17,690**

IBD candidates

Gd selection April 2011 – March 2012

Live time: 227.9 days Candidates: 8,249

Live time: 240.1 days Candidates: 36,284

Rachel Carr (Columbia University)

► Accidentals

- Gd: 0.3 d⁻¹ (error \ll 0.1 d⁻¹)
- H: 73.5 \pm 0.2 d⁻¹

Accidentals

- Gd: 0.3 d⁻¹ (error \ll 0.1 d⁻¹)
- ▶ H: 73.5 ± 0.2 d⁻¹

Fast neutrons + stopping muons

- ▶ Gd: 0.7 ± 0.2 d⁻¹
- H: $2.5 \pm 0.5 d^{-1}$ (all fast n)

Accidentals

- Gd: 0.3 d⁻¹ (error \ll 0.1 d⁻¹)
- ▶ H: 73.5 ± 0.2 d⁻¹

Fast neutrons + stopping muons

- ▶ Gd: 0.7 ± 0.2 d⁻¹
- H: $2.5 \pm 0.5 d^{-1}$ (all fast n)

Accidentals

- Gd: 0.3 d⁻¹ (error \ll 0.1 d⁻¹)
- ▶ H: 73.5 ± 0.2 d⁻¹

Fast neutrons + stopping muons

- ▶ Gd: 0.7 ± 0.2 d⁻¹
- H: $2.5 \pm 0.5 d^{-1}$ (all fast n)

► Cosmogenic isotopes, mainly ⁹Li

- ▶ Gd: 1.3 ± 0.5 d⁻¹
- ▶ H: 2.8 ± 1.2 d⁻¹

Rates of ${}^{9}Li$ and FN + SM are further constrained in final fit.

$\bar{\nu}_{e}$ flux prediction

Far detector-only analyses rely on $\bar{\nu}_e$ rate prediction:

$$N = \frac{\epsilon N_p}{4\pi} \sum_{R=1,2} \frac{1}{L_R^2} \frac{P_{th}^R}{\langle E_f \rangle_R} \langle \sigma_f \rangle_R$$

ε	detection efficiency
N _p	number of protons in fiducial volume
L _R	distance between reactor and far detector
P_{th}^R	thermal power of reactor (time-dependent)
$\langle E_f \rangle_R$	average energy per fission (time-dependent)
$\langle \sigma_f \rangle_R$	average cross section per fission (time-dependent), "anchored" to Bugey4 measurement at $L = 15 m$

Uncertainties

Normalization uncertainties (relative to signal):

Source	Gd selection	H selection
Reactor $\bar{\nu}_e$ flux	1.8%	1.8%
Efficiency	1.0%	1.6%
⁹ Li rate	1.5%	1.6%
Fast n + stopping μ rate	0.5%	0.6%
Accidentals rate	<0.1%	0.2%
Total statistical error	1.1%	

Spectrum shape uncertainties:

- Reactor $\bar{\nu}_e$ spectrum
- Energy scale

- ▶ ⁹Li spectrum
- Fast n + stopping μ spectrum

Rate+Shape fit

Unique Double Chooz fit strategy:

- Improves upon rate-based analysis by adding spectrum information
- Constrains backgrounds
- Fits data with specific oscillation shape

$$\boldsymbol{\chi}_{\textit{Rate+Shape}}^{2} = \sum_{i,j}^{B} \left(N_{i}^{obs} - N_{i}^{pred} \right) M_{ij}^{-1} \left(N_{j}^{obs} - N_{j}^{pred} \right)^{T} + \text{ pull terms}$$

$$3 = \text{number of energy bins} = \begin{cases} 18, \text{ for Gd} \\ 31, \text{ for H} \end{cases}$$

M = covariance matrix, including spectrum shape uncertainties

Pull terms on ⁹Li rate, FN + SM rate, energy scale, Δm^2

Published Rate+Shape fits

Gd analysis, June 2012

Phys. Rev. D 86 (2012)

H analysis, December 2012

Phys. Lett. B 723 (2013)

$\sin^2 2 heta_{13} = 0.097 \pm 0.048$

shown with all backgrounds subtracted. Gd uses two integration periods, yielding d.o.f. $= 2 \times 18 - 1$

Rate+Shape constraints

Rate+Shape fit constrains backgrounds:

		Input (relative uncertainty)	Fit output (rel. unc.)
Gd	⁹ Li rate	1.3 ± 0.5 d ⁻¹ (40%) →	$1.0 \pm 0.3 \text{ d}^{-1}$ (30%)
	FN + SM rate	0.7 ± 0.2 d ⁻¹ (30%) →	$0.6 \pm 0.1 \text{ d}^{-1}$ (20%)
н	⁹ Li rate	2.8 ± 1.2 d ⁻¹ (40%) →	$3.9 \pm 0.6 \text{ d}^{-1}$ (15%)
	FN + SM rate	2.5 ± 0.5 d ⁻¹ (20%) →	$2.6 \pm 0.4 \text{ d}^{-1}$ (15%)

• Also adjusts energy scale and Δm^2 to reach best fit.

I. Experiment overview

II. Latest Double Chooz results

- Reactor-off background measurements
- First combined Gd+H fit
- Reactor rate modulation analysis

III. Future of Double Chooz

Reactor-off background measurements

Analyzed 7.5 days of data with both reactors off.

Phys. Rev. D. 87 (2013)

- Unique Double Chooz capability
- Rate consistent with predictions:
 - Gd selection: $1.0 \pm 0.4 \text{ day}^{-1}$ with residual $\bar{\nu}_e$ subtracted (expected $2.0 \pm 0.6 \text{ day}^{-1}$)
 - H selection: $11.3 \pm 3.4 \text{ day}^{-1}$ with residual $\bar{\nu}_e$ and accidentals subtracted (expected $5.8 \pm 1.3 \text{ day}^{-1}$)

First combined Gd+H fit

Combining published Gd and H analyses:

- Data set covers April 2011-March 2012
- Fit includes correlation of systematic errors
- Backgrounds constrained by reactor-off measurements

Combined Gd+H fit results

PRELIMINARY:

Rate+Shape:	${ m sin}^2 2 heta_{13} = 0.109 \pm 0.035$	$(\chi^2/d.o.f. = 61.2/50)$
Rate-Only:	$\sin^2 2\theta_{13} = 0.107 \pm 0.045$	$(\chi^2/d.o.f. = 6.1/3)$

Compare to Gd-only analysis of same dataset (June 2012):

Rate+Shape:	$\sin^2 2\theta_{13} = 0.109 \pm 0.039$	$(\chi^2/d.o.f. = 42.1/35)$
Rate-Only:	$\sin^2 2\theta_{13} = 0.170 \pm 0.052$	$(\chi^2/d.o.f. = 0.5/1)$

Reactor rate modulation analysis

Fit observed rates for $\sin^2 2\theta_{13}$ and total background rate, B:

 $R^{obs} = B + \left(1 - \sin^2 2\theta_{13} \left\langle \sin^2 (1.27 \Delta m^2 L/E) \right\rangle \right) R^{exp, no osc}$

Valuable features:

- No *a priori* background model
- Combines Gd and H selections
- Leverage from reactor-off data

Reactor rate modulation results

Best fit: $\sin^2 2\theta_{13} = 0.097 \pm 0.035$

I. Experiment overview

II. Latest Double Chooz results

- Reactor-off background measurements
- First combined Gd+H fit
- Reactor rate modulation analysis

III. Future of Double Chooz

Near detector

Construction ongoing!

Near detector expected to begin taking data in spring of 2014.

Rachel Carr (Columbia University)

Future θ_{13} results

Expanded far detector-only analysis (end of 2013)

- $\blacktriangleright \sim 2 \times$ more statistics + optimized selection
- Reduced systematic errors
- Projected precision: $\sigma \approx 0.03$

Two-detector analysis (2014)

- Reactor uncertainties nearly drop out
- Projected final precision: $\sigma \approx 0.01$
- Ultimately background-limited (especially ⁹Li)

▶ Rich, unique program with far detector

- Two signal channels: Gd, H
- Two oscillation analyses: R+S, RRM
- Reactor-off background measurements

Summary

Rich, unique program with far detector

- Two signal channels: Gd, H
- Two oscillation analyses: R+S, RRM
- Reactor-off background measurements

New results

Gd+H Rate+Shape fit:

 $\sin^2 2\theta_{13} = 0.109 \pm 0.035$ $\sin^2 2\theta_{13} = 0.097 \pm 0.035$

Reactor rate modulation:

Summary

Rich, unique program with far detector

- Two signal channels: Gd, H
- Two oscillation analyses: R+S, RRM
- Reactor-off background measurements

New results

- Gd+H Rate+Shape fit:
- Reactor rate modulation:

$$\begin{split} & \sin^2 2\theta_{_{13}} = 0.109 \pm 0.035 \\ & \sin^2 2\theta_{_{13}} = 0.097 \pm 0.035 \end{split}$$

Future prospects

- Improved single-detector analysis
- First two-detector analysis

Additional plots

Summary of Double Chooz results

Gd, H, and combined fit results

Rate+Shape:

	Individual fit results		Combined fit, Jul. 2013	
Fit parameter	Gd, Jun. 2012	H, Dec. 2012	Gd selection	H selection
Energy scale	0.99 ± 0.01	0.99 ± 0.01	0.99 ± 0.01	0.99 ± 0.01
$FN+SM$ rate (d^{-1})	0.6 ± 0.1			2.6 ± 0.4
		3.9 ± 0.6		3.9 ± 0.6
$\Delta m^2 \ (10^{-3} { m eV}^2)$	2.32 ± 0.12	2.32 ± 0.12	2.31 ± 0.12	
sin ² 2θ ₁₃	0.109 ± 0.039	0.097 ± 0.048	0.109 ± 0.035	
χ^2 /d.o.f.	42.1/35	38.9/30		

Rate-Only:

	Individual fit results		Combined fit, Jul. 2013	
Fit parameter	Gd, Jun. 2012	H, Dec. 2012	Gd selection	H selection
Energy scale	1.00 ± 0.01	1.00 ± 0.02	1.00 ± 0.01	1.00 ± 0.02
		2.5 ± 0.5	0.6 ± 0.2	
	1.4 ± 0.5	2.8 ± 1.2	0.8 ± 0.4	
$\Delta m^2 \ (10^{-3} { m eV}^2)$	2.32 ± 0.12	2.32 ± 0.12	2.32 ± 0.12	
	0.170 ± 0.052	0.044 ± 0.061	0.107 ± 0.045	
χ^2 /d.o.f.	0.5/1	0/0	6.1/3	

Reactor-off information is not included in individual fits.

Rachel Carr (Columbia University)

Double Chooz for DPF 2013

Combined Gd+H Rate+Shape fit

Gd selection

All backgrounds subtracted at best-fit rates.

Gd and H prompt spectra, with backgrounds

Gd selection

H selection

Red line is combined Gd+H Rate+Shape best fit. Backgrounds shown at best-fit rates.

Correlations between Gd and H analyses

PRELIMINARY

Parameter	$ ho_{Gd,H}$
Accidental rate	0
Correlated light noise	0
Fast n + stopping μ rate	0
⁹ Li rate	0.003
⁹ Li shape	
Efficiency	0.09
Energy scale	0.4
Reactor	

Candidates from Gd selection

Candidates from H selection

χ^2 definition for individual Gd and H fits

$$\begin{split} \boldsymbol{\chi}_{Rate+Shape}^{2} &= \sum_{i,j}^{B} \left(N_{i}^{obs} - N_{i}^{pred} \right) M_{ij}^{-1} \left(N_{j}^{obs} - N_{j}^{pred} \right)^{T} \\ &+ \frac{(\alpha_{Li} - 1)^{2}}{\sigma_{Li}^{2}} + \frac{(\alpha_{FNSM} - 1)^{2}}{\sigma_{FNSM}^{2}} + \frac{(\alpha_{E} - 1)^{2}}{\sigma_{E}^{2}} \\ &+ \frac{(\Delta m^{2} - \Delta m_{MINOS}^{2})^{2}}{\sigma_{MINOS}^{2}} \end{split}$$

with covariance matrix:

$$M = M_{stat} + M_{reactor} + M_{acc} + M_{corr LN} + M_{Li shape} + M_{FNSM shape}$$

Rachel Carr (Columbia University)

χ^2 definition for combined Gd+H fit

$$\begin{split} \chi^{2} &= \sum_{l,j}^{B} (N_{l}^{Obs} - N_{l}^{pred}) M_{ij}^{-1} (N_{j}^{Obs} - N_{j}^{pred}) \end{split} \tag{1}$$

Predicted $\bar{\nu}_{e}$ spectrum

$$N_{i} = \frac{\epsilon N_{P}}{4\pi} \sum_{R} \frac{1}{L_{R}^{2}} \frac{P_{th}^{R}}{\langle E_{f} \rangle_{R}} \left(\frac{\langle \sigma_{f} \rangle_{R}}{\sum_{k} \alpha_{k}^{R} \langle \sigma_{f} \rangle_{k}} \sum_{k} \alpha_{k}^{R} \langle \sigma_{f} \rangle_{k}^{i} \right)$$

Bugey4 "anchor":
$$\langle \sigma_f
angle_R = \langle \sigma_f
angle_{Bugey} + \sum_k \left(lpha_k - lpha_k^{Bugey}
ight) \langle \sigma_f
angle_k$$

... scales predicted $\langle \sigma_f \rangle$ to match $\langle \sigma_f \rangle$ measured at L = 15 m, removing sensitivity to $\Delta m^2 \sim 1$ eV² oscillations

⁹Li measurement

Rate derived from $\Delta t_{\mu} = t - t_{\text{previous }\mu}$ for IBD candidates:

- Δt_{μ} fit with $\tau({}^{9}Li) = 257$ ms (sample plot show for $E_{\mu} > 600$ MeV)
- Purity increased with $\Delta R_{\mu} \frac{1}{track}$ cuts
- Consistent rates found for Gd and H

Spectrum shape predicted from MC:

- Spectrum uncertainties from uncertainty on ⁹Li branching ratios
- Data consistent with predicted shape

Fast n + stopping μ measurement

Rough estimate:

• Extrapolate from $E_p \in [12, 30]$ MeV

Refined measurement:

- Pure selection from IV/OV-tagging (+ additional cuts, background subtraction)
- Fit with linear/exponential model
- Rate from integrating spectrum fit

All stopping μ removed from H selection with $\Delta T < 10 \ \mu s$ cut.

Light noise

Cuts remove almost all light noise, with negligible signal inefficiency:

Charge isotropy: $\frac{Q_{max}}{Q_{tot}} < \begin{cases} 0.09 & H, Gd prompt \\ 0.06 & Gd delayed \end{cases}$

 Q_{max} = maximum charge seen by single PMT Q_{tot} = total charge seen by all PMTs

Pulse simultaneity: T_{start} < 40 ns</p>

 T_{start}^{RMS} = RMS of pulse start times, over all PMTs recording pulses

Time-correlated light noise remains in H selection: $0.3 \pm 0.1 \text{ d}^{-1}$ (included in H fit, but impact is negligible)