Search for Light- and Heavy-flavor Three-Jet Resonances with CMS

DPF CONFERENCE, SANTA CRUZ AUGUST 15, 2013

CLAUDIA SEITZ, RUTGERS UNIVERSITY, FOR THE CMS COLLABORATION

CMS

Claudia Seitz, Rutgers University

August 15, 2013

New Physics: Supersymmetry

Supersymmetry as possible extension of the Standard Model

R-parity to distinguish between SM and SUSY

(B=Baryon number, L=Lepton number, s=Spin)

$$R = (-1)^{(2s+3B+L)} = \begin{cases} +1 & \text{For SM particles} \\ -1 & \text{For SUSY particles} \end{cases}$$

R-parity conservation (RPC)

- Always pairs of sparticles
- Lightest supersymmetric particle (LSP) is stable
- Final state decay has at least one LSP

R-parity violation (RPV)

- Either lepton or baryon number violation
- Sparticles can decay exclusively to SM particles
- Low missing energy in the final state

New Physics: Supersymmetry

Supersymmetry as possible extension of the Standard Model

R-parity to distinguish between SM and SUSY

(B=Baryon number, L=Lepton number, s=Spin)

$$R = (-1)^{(2s+3B+L)} = \begin{cases} +1 & \text{For SM particles} \\ -1 & \text{For SUSY particles} \end{cases}$$

Focus of this talk

R-parity conservation (RPC)

- Always pairs of sparticles
- Lightest supersymmetric particle (LSP) is stable
- Final state decay has at least one LSP

R-parity violation (RPV)

- Either lepton or <u>baryon number violation</u>
- Sparticles can decay exclusively to SM particles
 - Low missing energy in the final state

Multijet Resonances

- What if new physics signals couple strongly and decay into quarks and gluons?
- Difficulty is the large QCD background
- Search for strongly coupled resonances decaying into three jets
- Benchmark model pair produced gluinos with R-parity violating decay
 - □ Inclusive search: light-flavor decay $\tilde{g} \rightarrow uds$
 - **☐** Heavy-flavor search: heavy-flavor decay $\tilde{g} \rightarrow udb$ or $\tilde{g} \rightarrow csb$

Multijet Resonances

- What if new physics signals couple strongly and decay into quarks and gluons?
- Difficulty is the large QCD background
- Search for strongly coupled resonances decaying into three jets
- Benchmark model pair produced gluinos with R-parity violating decay

Inclusive search: light-flavor decay $\tilde{g} \rightarrow uds$

☐ Heavy-flavor search: heavy-flavor decay $\tilde{g} \rightarrow udb$ or $\tilde{g} \rightarrow csb$

Multijet Resonances

- What if new physics signals couple strongly and decay into quarks and gluons?
- Difficulty is the large QCD background
- Search for strongly coupled resonances decaying into three jets
- Benchmark model pair produced gluinos with R-parity violating decay
 - Inclusive search: light-flavor decay $\tilde{g} \rightarrow uds$

☐ Heavy-flavor search: heavy-flavor decay $\tilde{g} \rightarrow udb$ or $\tilde{g} \rightarrow csb$

First search in this final state

Large Hadron Collider and the CMS experiment

NEW RESULT: EXO-12-049

Analysis uses 19.5/fb of data collected with CMS during 2012 at 8 TeV

Event Selection

5

- Trigger: 4 calorimeter jets > 60 GeV, 2 calorimeter jets > 20 GeV
 Good Primary Vertex
- Jet selection
 - Particle Flow Algorithm (PF)
 - Attempt to reconstruct every particle in the event
 - □ Anti- k_T jet clustering algorithm with R=0.5
 - Quality selection applied on the jets
 - \square At least 6 PF jets > 35 GeV and η < 2.5
 - $\Box \quad 4^{th}\text{-jet } p_T > 80 \text{ GeV}$
 - 6th-jet p_T > 60 GeV (optimized for higher masses)
 - b tagging
 - Combined Secondary Vertex (CSV) algorithm

ent proton z

Jet Ensemble Technique Combine the six highest jets into 20 unique triplet combinations 123, 124, 125, 126, 134, 135, 136, 145, **146**, 156, 234, **235**, 236, 245, 246, 256, 345, 346, 356, 456 For each triplet plot M_{iii} versus $\sum_{m} |p_T^{Jet}|$ CMS Simulation Preliminary Triplet Invariant Mass [GeV] 400 **RPV** Gluino 400 GeV 200

1000

Triplet Scalar p_ [GeV]

800

1200

200

400

600

0<u></u>

Jet Ensemble Technique

Combine the six highest jets into 20 unique triplet combinations

• For each triplet plot M_{ij} versus $\sum^{jj} |p_T^{Jet}|$

Require each triplet to pass

 $M_{iii} < \sum^{ijj} |p_T^{Jet}| \frac{1}{L} \Delta \text{ (offset)}$

August 15, 2013

Claudia Seitz, Rutgers University

Selection Optimization

- □ Diagonal cut $\Delta = 110$ GeV
 - Separates successfully Gaussian signal from intrinsic background of wrong combinations
 - Chosen based on largest accessible mass range in data
- Three additional handles
 - Event shape variables: distinguish heavy resonance decays from QCD background
 - □ 6th Jet p_T selection: improves sensitivity for high mass gluinos
 - b tags: reduce background for heavy flavor search

Selection Optimization: Event Shape Variables

- Heavy gluinos are produced with little boost and decay almost isotropically in the detector
- QCD events have a more dijet like structure
- Sphericity variable S = ³/₂(λ₂ + λ₃) from eigenvalues of sphericity tensor is a good measure of the event shape

Optimization based on expected background and signal events

Selection Optimization: 6th Jet p_T

Changes in 6th jet p_T and adding b tags can changes peak position of the M_{iii} background distribution → optimization at triplet level
 Metric N_{sig}/√(N_{sig}+N_{bkg}) N = number of triplets
 N_{sia}: Gaussian integral ± 2 sigma

N_{bka}: fit to the data, integral in the same mass range

	N ^{Sig} /		$N_{trip}^{Sig} + N_{trip}^{Bkg}$ CMS Preliminary 19. If b^{-1} at $\sqrt{s} = 8$ TeV								
Gluino Mass [GeV]	1500	0.84	0.90	1.03	1.09	1.20	1.2	1.33	1.35		14
	1250	0.85	0.92	1.03	1.10	1.19	1.23	1.34	1.34		
	1000	0.86	0.96	1.01	1.10	1.17	1.24	1.30	1.35		1.2
	750	0.93	1.03	1.14	1.20	1.15	קהי	1.21	1.13		1
	500	1.17	1.22	1.28	1.22	1.02	1.()	1.03	0.95	_	0.8
	450	1.29	1.37	1.12	1.21	1.14	1.05	0.98	0.84		
	400	1.30	1.42	1.32	1.22	1.14	1.06	0.86	0.69		0.6
	350	1.34	1.29	1.25	1.24	1.15	0.96	1.22	0.56		0.4
	300	1.87	1.66	1.45	1.25	1.07	0.75	0.58	0.36		0.2
	250	2.41	2.03	1.62	0.98	0.84	0.50	0.41	0.21		0
		60	70	80	90	100	110	120	130		U
	Minimum 6 ^{***} Jet p ₊ [GeV]										

Selection Optimization: Conclusion

□ Diagonal cut $\Delta = 110$ GeV

Inclusive search

- □ 6th-jet p_T > 110 GeV
 - previous exclusion in 2011 up to 460 GeV <u>http://arxiv.org/pdf/1208.2931.pdf</u>
- □ Sphericity > 0.4
- Heavy-flavor search
 - >= 1 b tags in the triplet
 - Low mass (200 600 GeV):
 - □ 6^{th} -jet $p_T > 60$ GeV, 4^{th} -jet $p_T > 80$ GeV
 - □ High mass (600 1500 GeV):
 - □ 6th-jet p_T > 110 GeV
 - □ Sphericity > 0.4

Signal Modeling

Triplet

- Signal is modeled as a Gaussian peak
- Determined from the M_{iii} distribution of simulated events
- Two parameters to model signal
 - Gaussian width
 - Acceptance x Efficiency
 - f1: fraction of events passing all cuts
 - f2: average number of triplets per event passing the diagonal cut
 - **f3:** ratio of **triplets in the Gaussian** signal peak with respect to all triplets

Acceptance x Eff. = f1 x f2 x f3 =
$$\frac{N_{Evt}^{rass}}{N_{Evt}^{Generated}} x \langle N_{Triplet} \rangle$$

Claudia Seitz, Rutgers University

Results: Inclusive Analysis

- Background for light-flavor search from parameterized fit
- Good agreement between data and fit
- Limits are placed at 95% C.L. at 650 GeV

Results: Heavy-Flavor Search

D Require ≥ 1 b tag in the triplet

Low mass (200 – 600 GeV)

- All-hadronic tt becomes visible
- Background estimated from b jet control region in data and tT MC

High mass (> 600 GeV)

- Background from parameterized fit
- Heavy-Flavor RPV excluded at 95% C.L. below 835 GeV

- Presented search for three-jet resonances in an all-hadronic final stated using jet-ensemble technique in 19.5/fb of data
 First time search for heavy-flavor jets in this final states
- Substantial improvement of previous limits
 - Gluinos decaying to light-flavor jets: 650 GeV
 - Gluinos decaying to light-and heavy-flavor jets: 835 GeV
- More information:
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO12049
 - CMS-PAS-EXO-12-049 <u>http://cds.cern.ch/record/1563139</u>

Claudia Seitz, Rutgers University

August 15, 2013