Threshold Resummation and Determinations of Parton Distribution Functions

David Westmark

Florida State University

August 15, 2013
An accurate knowledge of parton distribution functions (PDFs) is vital to precision phenomenology.
An accurate knowledge of parton distribution functions (PDFs) is vital to precision phenomenology.

- e.g. A massive state produced at high rapidity would require knowledge of PDFs at high x, where resummation effects are known to be large.
Quantum Chromodynamics Overview

\[\sigma_{H_1+H_2}(x) = \sum_{a,b} \int \int \int \, dx_1 \, dx_2 \, dz \, f_{a/H_1}(x_1) f_{b/H_2}(x_2) \hat{\sigma}_{ab}(z) \delta(x - x_1 x_2 z) \]

- Observables for hadron-initiated processes comprise a convolution of two parts:
 - Parton distribution functions (PDFs) \(f_{a/H}(x) \)
 - Hard-scattering cross section \(\hat{\sigma}_{ab}(x) \)

- PDFs are not calculable using perturbation theory; their forms are inferred by comparing data to theoretical predictions of observables.

- \(\hat{\sigma}_{ab} \) is calculated using perturbation theory.
“Threshold regions” are encountered in the kinematics of some observables at higher orders of perturbation theory.

 ▶ The leading order (LO) process takes up all available energy of the partonic system

 ▶ Final state gluons are soft
“Threshold regions” are encountered in the kinematics of some observables at higher orders of perturbation theory.

- The leading order (LO) process takes up all available energy of the partonic system
- Final state gluons are soft

When the kinematics is constrained (as occurs in differential cross sections), logarithms associated with soft gluons become large.
“Threshold regions” are encountered in the kinematics of some observables at higher orders of perturbation theory.

- The leading order (LO) process takes up all available energy of the partonic system
- Final state gluons are soft

When the kinematics is constrained (as occurs in differential cross sections), logarithms associated with soft gluons become large.

These “threshold logarithms” appear at every order beyond LO in a predictable manner.
The threshold logarithms are convoluted with the PDFs. In order to disentangle the logarithms from the PDFs, move to a conjugate Mellin space.
The threshold logarithms are convoluted with the PDFs. In order to disentangle the logarithms from the PDFs, move to a conjugate Mellin space.

\[
\int_0^1 dz \ z^{N-1} \int_0^1 dx \ f(x) \int_0^1 dy \ g(y) \delta(z - xy) = \\
\int_0^1 dx \ x^{N-1} f(x) \int_0^1 dy \ y^{N-1} g(y) = \tilde{f}(N) \tilde{g}(N)
\]

Threshold logarithms in Mellin space manifest in powers of ln \(N \).
Threshold (or soft-gluon) resummation is summing the logarithms to all orders in $\alpha_s^m \ln^n N$ for all $n = 2m$ (LL), $2m - 1 \leq n \leq 2m$ (NLL), etc.
Threshold (or soft-gluon) resummation is summing the logarithms to all orders in $\alpha^m_S \ln^n N$ for all $n = 2m$ (LL), $2m - 1 \leq n \leq 2m$ (NLL), etc.

- It is known that this sum is an exponential in Mellin space.
Two processes being considered:

- Deep inelastic scattering (DIS): \(l + H \rightarrow l + X \)
- Lepton pair production (LPP): \(H_1 + H_2 \rightarrow l + l + X \)
Two processes being considered:

- Deep inelastic scattering (DIS): $l + H \rightarrow l + X$
- Lepton pair production (LPP): $H_1 + H_2 \rightarrow l + l + X$

These two processes are primary sources of information on PDFs.

- DIS is used to constrain valence PDFs ($F_2 \sim 4u + d$)
- LPP is used to constrain antiquark PDFs ($\sigma \sim u\bar{u}, d\bar{d}$)
The squared mass of the final hadronic state in DIS is given by

\[W^2 = M^2 + Q^2 \left(\frac{1}{x} - 1 \right) \]

Threshold occurs at \(W^2 = M^2 \).

This corresponds to \(x = 1 \).
F_2 Proton Deep Inelastic Scattering
CTEQ6M

Q^2 = 64 GeV^2
Resummation Effects

Threshold Resummation and PDFs

August 15, 2013

F$_2$ Proton Deep Inelastic Scattering

CTEQ6M

Q^2
LPP Kinematics

- x_1 and x_2 are the momentum fractions that the partons take from the parent hadrons.
- Threshold occurs when $x_1 x_2 = \tau = \frac{Q^2}{S}$.
- LPP data is often in the form of the x_F distribution, where $x_F = \frac{2p_t}{\sqrt{S}}$.
LPP Kinematics

- At NLO, x_1 and x_2 are integrated, implying that threshold can occur at many values of x_F.

- Threshold kinematics requires that at large x_F, x_1 is large and x_2 is small. (And vice-versa)
- The PDFs fall rapidly at large x, so the largest contribution comes from the threshold region.
- Therefore, threshold corrections dominate at high $|x_F|$.
for Proton-Proton LPP x_F Distribution

$Q = 8 \text{ GeV}$
$
\sqrt{s} = 38.76 \text{ GeV}$

CTEQ6M
Others have found similar results:

Figure 15 from
Bonvini, M.; Forte, S. & Ridolfi, G.
Soft gluon resummation of Drell-Yan rapidity distributions: theory and phenomenology
Figure 2 from
Corcella, G. & Mitov, A. D.
Soft-Gluon Resummation for Heavy Quark Production in Charged-Current Deep Inelastic Scattering
Figure 3 from
Aicher, M.; Schafer, A.; & Vogelsang, W.
Soft-gluon resummation and the valence parton distribution function of the pion
The recent CJ12 PDF set was fit including data from the high x and moderate Q^2 kinematic regions:
The recent CJ12 PDF set was fit including data from the high x and moderate Q^2 kinematic regions:

Figure 1 from Owens, J. F.; Accardi, A. & Melnitchouk, W. Global parton distributions with nuclear and finite-Q^2 corrections. Phys.Rev. D87 (2013) 094012.
The recent CJ12 PDF set was fit including data from the high x and moderate Q^2 kinematic regions:
Threshold resummation has a large effect on DIS and LPP calculations.
Threshold resummation has a large effect on DIS and LPP calculations.

Threshold resummation affects DIS and LPP differently because of their differing kinematics.
Threshold resummation has a large effect on DIS and LPP calculations.

Threshold resummation affects DIS and LPP differently because of their differing kinematics.

- PDFs are sensitive to resummation effects at different values of x for DIS and LPP.
Threshold resummation has a large effect on DIS and LPP calculations.

Threshold resummation affects DIS and LPP differently because of their differing kinematics.
- PDFs are sensitive to resummation effects at different values of x for DIS and LPP.

Preliminary results of the global fit are currently being investigated.