

1

Evidence of single top s-channel in lepton+jets channel at CDF

Hao Liu (on behalf of CDF collaboration) at DPF 2013 8-15-2013

- Top quark: the heaviest know particle, couples strongly to Higgs, decays as a free quark.
- Top quark pair production process was first observed at Tevatron in 1995. Single top production process was first observed at Tevatron again in 2009.
- Strong production

• Electroweak production

Cross section(pb)	ťŦ	<i>s</i> -channel	<i>t</i> -channel	<i>tW</i> -channel
Tevatron(1.96 TeV)	7.08	1.05	2.08	0.25
LHC(8 TeV)	234	5.55	87.2	22.2

N. Kidonakis, Phys. Rev. D 83, 091503 (2011) N. Kidonakis, Phys. Rev. D 81, 054028 (2010) N. Kidonakis, Phys. Rev. D 82, 054018 (2010) N. Kidonakis, arxiv:1210.7813.

- The cross section of s-channel single top process at 8 TeV LHC only increased a little compare to Tevatron 1.96 TeV *pp* collision. Thus, the signal to background ratio is lower for *s*-channel process at LHC.
- Single top process
 - Direct probe to the $|V_{tb}|$ element of CKM matrix.
 - Able to measure the quark decay width.
 - Sensitive to several new physics models, such new bosons.

Fermilab Tevatron

- Proton-antiproton collider, with circumference of 4 mile, center of mass energy 1.96 TeV.
- Run II starts since 2001, ends in 2011. More than 10 fb⁻¹ total luminosity delivered. At CDF, after data quality requirement, 9.4 fb⁻¹ used in this analysis.

CDF Detector

- CDF is a general purpose particle detector.
- From inside to outside:
 - Tracker
 - Calorimeter
 - Muon detector

Event Selection

- High p_T isolated lepton (e/μ) :
 - $p_T > 20$ GeV.
- Missing transverse energy:
 - > 10 GeV(for central muons)
 - > 20 GeV(other leptons)
- Two jets:
 - $E_T > 20 \text{ GeV}, |\eta| < 2.0,$
 - leading jet: $E_T > 30$ GeV.
- $H_T > 125 \text{ GeV}, M_{ij} > 30 \text{ GeV}.$
 - $H_T = \text{Jets } E_T + \text{Lepton } p_T + \text{Missing } E_T$

Higgs Search at CDF

- CDF published the final Higgs search results with CDF full dataset in 2012.
- In our analysis, we applied most improvements we made in Higgs search, in order to increase the signal acceptance.

b-Jet Identification

- We applied *b*-tagging algorithm to identify the *b*jets in this analysis.
- HOBIT (Higgs Optimized b-Identification Tagger) was developed for Higgs analysis, but has been validated for b-jet in other processes.
- We defined two different tagged jets by applying different requirements on the HOBIT output value
 - Tight tag (**T**): tagging efficiency 0.42
 - Loose tag (L): tagging efficiency 0.70
- From these two tag requirements, we defined four tagging categories:
 - TT: two tight *b* tags
 - TL: one tight + one loose *b* tags
 - T: exclusive one tight *b* tag
 - LL: two loose *b* tags

VIRGINIA Signal & Background Modeling

- Backgrounds are simulated by each of the following simulator, and all been showered by PYTHIA
 - Single top: POWHEG
 - *tt*, diboson, Higgs: PYTHIA
 - W/Z+jets: ALPGEN
- Multijet is a data driven background.
- The normalization of single top, *t*⁷, diboson, Higgs and Z+jets are determined from simulation cross section.

• The table shows the prediction of all processes and with systematic uncertainty of normalization included.

TT	TL	Т	LL
1.7 ± 0.4	13.2 ± 2.7	184 ± 23	24.8 ± 3.9
$17.8 {\pm} 2.2$	$21.2{\pm}2.0$	52.7 ± 5.4	$9.9{\pm}0.9$
$2.4{\pm}0.3$	$2.4{\pm}0.2$	$7.1 {\pm} 0.7$	$0.96{\pm}0.08$
$10.9 {\pm} 1.2$	$20.7 {\pm} 2.3$	163 ± 18	27.1 ± 3.1
163 ± 21	194 ± 19	$502{\pm}50$	$58.1 {\pm} 6.6$
$6.1 {\pm} 0.6$	$6.4 {\pm} 0.4$	$10.3 {\pm} 0.7$	$1.7 {\pm} 0.2$
246 ± 99	327 ± 130	$1166 {\pm} 468$	109 ± 44
$19.0{\pm}7.8$	120 ± 49	$1158 {\pm} 467$	$164{\pm}67$
4.3 ± 1.3	62 ± 13	978 ± 141	242 ± 34
$29{\pm}12$	47 ± 19	281 ± 112	45 ± 18
$18.1 {\pm} 2.5$	$35.3 {\pm} 4.2$	251 ± 28	$13.6 {\pm} 1.5$
54.5 ± 6.7	61.2 ± 5.6	$109{\pm}10$	17.8 ± 2.1
573 ± 155	911 ± 248	4860 ± 1320	714 ± 181
466	765	4620	718
2.52	2.21	1.60	0.66
	$\begin{array}{c} {\rm TT} \\ 1.7 {\pm} 0.4 \\ 17.8 {\pm} 2.2 \\ 2.4 {\pm} 0.3 \\ 10.9 {\pm} 1.2 \\ 163 {\pm} 21 \\ 6.1 {\pm} 0.6 \\ 246 {\pm} 99 \\ 19.0 {\pm} 7.8 \\ 4.3 {\pm} 1.3 \\ 29 {\pm} 12 \\ 18.1 {\pm} 2.5 \\ 54.5 {\pm} 6.7 \\ 573 {\pm} 155 \\ 466 \\ 2.52 \end{array}$	$\begin{array}{cccc} {\rm TT} & {\rm TL} \\ 1.7 {\pm} 0.4 & 13.2 {\pm} 2.7 \\ 17.8 {\pm} 2.2 & 21.2 {\pm} 2.0 \\ 2.4 {\pm} 0.3 & 2.4 {\pm} 0.2 \\ 10.9 {\pm} 1.2 & 20.7 {\pm} 2.3 \\ 163 {\pm} 21 & 194 {\pm} 19 \\ 6.1 {\pm} 0.6 & 6.4 {\pm} 0.4 \\ 246 {\pm} 99 & 327 {\pm} 130 \\ 19.0 {\pm} 7.8 & 120 {\pm} 49 \\ 4.3 {\pm} 1.3 & 62 {\pm} 13 \\ 29 {\pm} 12 & 47 {\pm} 19 \\ 18.1 {\pm} 2.5 & 35.3 {\pm} 4.2 \\ 54.5 {\pm} 6.7 & 61.2 {\pm} 5.6 \\ 573 {\pm} 155 & 911 {\pm} 248 \\ 466 & 765 \\ 2.52 & 2.21 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- To increase the sensitivity, we need a multivariate technique to separate signal from backgrounds.
- We used TMVA trained neural network to work as the final discriminant of this analysis.
- Input variables used in the analysis are listed in the table.
- We trained separate neural networks for central leptons and loose muons, also separately for each tagging category.

variable	Central Leptons	Loose Muons
$M_{l\nu b}$		
$M_{l u bb}$		\checkmark
Lep p_T		\checkmark
M_{jj}		\checkmark
$\cos heta_{lj}$		\checkmark
H_t		\checkmark
$M_{l\nu b}^{T}$		\checkmark
b jet selector output		

UNIVERSITY VIRGINIA Data Simulation Comparison

Single Top s-channel in Lepton+Jets, CDF Run II Preliminary (9.4 fb⁻¹)

Single Top s-channel in Lepton+Jets, CDF Run II Preliminary (9.4 fb⁻¹)

Single Top s-channel in Lepton+Jets, CDF Run II Preliminary (9.4 fb⁻¹)

- The modeling of final discriminants was checked in the pretag control region for each neural networks.
- These plots validates the modeling of the correlations between input variables we used in this analysis.

Single Top s-channel in Lepton+Jets, CDF Run II Preliminary (9.4 fb⁻¹)

- Shows a good agreement between data and background prediction.
- This is the most sensitive channel, single top s-channel is obvious there.

Discriminants Output

Single Top s-channel in Lepton+Jets, CDF Run II Preliminary (9.4 fb⁻¹)

Single Top s-channel in Lepton+Jets, CDF Run II Preliminary (9.4 fb⁻¹)

Single Top s-channel in Lepton+Jets, CDF Run II Preliminary (9.4 fb⁻¹)

Systematic Uncertainties

- We considered two types of systematic uncertainties. Rate uncertainty only affects the overall scale, while shape uncertainty changes the discriminant output bin by bin (shape changing).
- Uncertainties considered in this analysis are listed below.

Source of uncertainty	Rate	Shape	Affected samples
b tagging scale factor uncertainty	4%-18%		$t\bar{t}$, single top, WZ , ZZ , Higgs
Charm mistag rate	7% - 37%		WW
W+jets mistag rate	4% - 37%		W + Mistag jets
Luminosity uncertainty	6%		$t\bar{t}$, single top, diboson, Higgs
Lepton acceptance uncertainty	2%- $4%$		$t\bar{t}$, single top, diboson, Higgs
Cross section uncertainty	6% - 10%		$t\bar{t}$, single top, diboson, Higgs
Initial/Final state radiation	0%- $10%$	\checkmark	$t\bar{t}$, single top
Multijet normalization	40%		Multijet
Z+jets normalization	45%		$Z+ ext{jets}$
Wbb and Wcc normalization	30%		Wbb, Wcc
Wc normalization	30%		Wc
Jet energy scale	0% - 10%	\checkmark	All
Normalization and factorization scale		\checkmark	W + jets
Electron multijet background		\checkmark	Electron multijet

- We measured the single top *s*-channel cross section using a Bayesian binned likelihood technique assuming a flat prior in the cross section and integrating the posterior over all sources of systematic uncertainty.
- The final measured cross section are extracted from the posterior probability density distribution. The cross section for t-channel are set to standard model prediction in the calculation.

- To calculate p-value, we ran pseudo-experiments with background only hypothesis.
- P-value is a test how likely the data would fluctuate to the observed cross section when there is no signal.
 - Expected significance: 2.9 sigma
 - Observed significance: 3.8 sigma

Consistency Check

- We also measured the *s*-channel cross section in each lepton and tagging category.
- This shows our measurement results are consistent with each other in each subset of data.

Summary

- We measured the cross section of single top s-channel cross section in lepton + jets channel.
- The observed cross section is $\sigma_{Obs}^{s-ch} = 1.41_{-0.42}^{+0.44} \text{ pb}$, corresponds to a significance of 3.8 sigma.
- Compatible with standard prediction.
- This results, when combined with other measurements, will be a legacy measurement at Tevatron.

Thank you for your attention!

Backup

CDF Previous Results

