First Search for Single Top *s*-channel Production in E_T +jets at CDF

Matteo Cremonesi

Matteo Cremonesi

DPF 2013 - August 15, 2013

Single Top Quark Production

The top quark can be produced:

- in tt pairs through strong interaction;
- as single top via EW interaction.

Observed by CDF and DØ in 2009:

- T. Aaltonen, et al. [CDF collaboration], Phys. Rev. Lett. 103, 092002 (2009)
- V.M. Abazov et al. [DØ Collaboration], Phys. Rev. Lett. 103, 092001 (2009)

Two dominant processes:

- t-channel;
- s-channel.
 - Wt-channel has a small cross section at the Tevatron.

	$\sigma(pb)$
s-ch	1.05 ± 0.05 a
t-ch	2.08 ± 0.08 b
Wt-ch	$0.25\pm0.03~^{c}$
tī	7.08 ± 0.49 ^d

Theoretical cross sections at Tevatron considering $m_t=173 {
m GeV/c}^2$

^aN. Kidonakis, arXiv:1001.5034 ^bN. Kidonakis, arXiv:1103.2792 ^cN. Kidonakis, arXiv:1005.4451 ^dN. Kidonakis, arXiv:1205.3453

Single Top *t*-channel

- It has already been established by the LHC experiments^{1 2};
- The light-flavor jet is more forward:
 - \circ For a precise measurement, a good η coverage is required;

Matteo Cremones

¹ATLAS Collaboration, Measurement of the t-channel Single Top-Quark Production Cross Section in 0.70 fb⁻¹ pp Collisions $\sqrt{s} = 7$ TeV with the ATLAS detector, ATLAS-CONF-2011-101(2011)

²CMS Collaboration, Measurement of the t-channel single top quark production cross sec tion in *pp* collisions at $\sqrt{s} = 7$ TeV, CMS-TOP-10-008 (2011)

Single Top s-channel

- It has not been observed yet;
 - $\circ~$ DØ recently claimed a 3.7 $\sigma~$ evidence³.
- Difficult at LHC;
 - $\circ \ \sigma^{SM}_{s-ch} \cong \ {\rm 5 \ pb}, \ \sigma^{SM}_{t-ch} \cong \ {\rm 65 \ pb \ at \ LHC \ 7 \ TeV}.$
- Deviations from SM prediction may indicate new physics, like the existence of a W' or of a charged Higgs boson⁴.

At **CDF**, two statistically independent samples are analyzed, looking for single top *s*-channel production:

- the *lvbb* sample;
 - one isolated lepton, missing transverse energy and jets are required; see previous talk.
- the **E**_b sample.

³http://theory.fnal.gov/jetp/talks/WineAndCheese_20130621_v6.pdf

 $^{^{4}}$ T. M. P. Tait and C. P. Yuan, Single top quark production as a window to physics beyond the standard model, Phys. Rev. D 63 (2000) 014018.

The ∉_Tbb̄ sample

We look for single top s-channel events when $t{\rightarrow}Wb$ and W decays leptonically, but:

• There are no identified leptons;

or

- There are τ s that decay hadronically.
 - This analysis is sensitive to the $t \to Wb \to \tau \nu b$ channel, where the τ is reconstructed as a jet in the calorimeters, even if we do not apply a τ reconstruction.

The Tevatron

- Collider $p\bar{p} \sqrt{s} = 1.96$ TeV
- Radius R = 1 km
- $\bullet\,$ Two experiments: CDF and DØ
- Run II (2001–2011): $\sim 12 \text{ fb}^{-1}$ of $p\bar{p}$ collisions, $\sim 10 \text{ fb}^{-1}$ recorded by CDF.

 $^{6}/_{43}$

The CDF Detector

- Multipurpose detector, $\mathsf{B}\ensuremath{\ensuremath{\emptyset}}$ interaction point at Tevatron
- Tracking system in magnetic field at 1.4 T
- Calorimeters
 - Electromagnetic and hadronic
 - Sampling
 - Projective towers
- Muon chambers
 - 4 layers of drift chambers
- Trigger system
 - three levels of online selection

1. Select events with large missing transverse energy and 2/3 jets in the final state;

- 1. Select events with large missing transverse energy and 2/3 jets in the final state;
- 2. Require at least one *b*-tag to reduce the large backgrounds from light-flavor jet production;

- 1. Select events with large missing transverse energy and 2/3 jets in the final state;
- 2. Require at least one *b*-tag to reduce the large backgrounds from light-flavor jet production;
- 3. Model signal and backgrounds:

- 1. Select events with large missing transverse energy and 2/3 jets in the final state;
- 2. Require at least one *b*-tag to reduce the large backgrounds from light-flavor jet production;
- 3. Model signal and backgrounds:
 - QCD multijet modeled with a data-derived method (tag-rate matrix);

- 1. Select events with large missing transverse energy and 2/3 jets in the final state;
- 2. Require at least one *b*-tag to reduce the large backgrounds from light-flavor jet production;
- 3. Model signal and backgrounds:
 - QCD multijet modeled with a data-derived method (tag-rate matrix);
 - Mistag light-flavor events modeled with a mistag matrix;

- 1. Select events with large missing transverse energy and 2/3 jets in the final state;
- 2. Require at least one *b*-tag to reduce the large backgrounds from light-flavor jet production;
- 3. Model signal and backgrounds:
 - QCD multijet modeled with a data-derived method (tag-rate matrix);
 - · Mistag light-flavor events modeled with a mistag matrix;
- 4. Use multivariate techniques:

- 1. Select events with large missing transverse energy and 2/3 jets in the final state;
- 2. Require at least one b-tag to reduce the large backgrounds from light-flavor jet production;
- 3. Model signal and backgrounds:
 - QCD multijet modeled with a data-derived method (tag-rate matrix);
 - Mistag light-flavor events modeled with a mistag matrix;
- 4. Use multivariate techniques:
 - Reconstruct the top quark;

- 1. Select events with large missing transverse energy and 2/3 jets in the final state;
- 2. Require at least one *b*-tag to reduce the large backgrounds from light-flavor jet production;
- 3. Model signal and backgrounds:
 - QCD multijet modeled with a data-derived method (tag-rate matrix);
 - Mistag light-flavor events modeled with a mistag matrix;
- 4. Use multivariate techniques:
 - Reconstruct the top quark;
 - Reduce the QCD Multijet background;

- 1. Select events with large missing transverse energy and 2/3 jets in the final state;
- 2. Require at least one b-tag to reduce the large backgrounds from light-flavor jet production;
- 3. Model signal and backgrounds:
 - QCD multijet modeled with a data-derived method (tag-rate matrix);
 - Mistag light-flavor events modeled with a mistag matrix;
- 4. Use multivariate techniques:
 - Reconstruct the top quark;
 - Reduce the QCD Multijet background;
 - Develop a final discriminant as a combination of a W/Z+jets and $t\bar{t}$ Neural Networks;

- 1. Select events with large missing transverse energy and 2/3 jets in the final state;
- 2. Require at least one b-tag to reduce the large backgrounds from light-flavor jet production;
- 3. Model signal and backgrounds:
 - QCD multijet modeled with a data-derived method (tag-rate matrix);
 - Mistag light-flavor events modeled with a mistag matrix;
- 4. Use multivariate techniques:
 - Reconstruct the top quark;
 - Reduce the QCD Multijet background;
 - Develop a final discriminant as a combination of a W/Z+jets and $t\bar{t}$ Neural Networks;
- 5. Use the final discriminant to extract cross section.

1. Select events with large missing transverse energy and 2/3 jets in the final state;

Event Pre-selection

Data and triggers:

- The full CDF Run II dataset (9.5 fb⁻¹) is analyzed;
- Events are accepted on line by the trigger if they contain large ∉_T and at least two jets.

Basic selection:

- Large missing transverse energy (∉_T);
- No isolated leptons;
 - We use loose identification cuts to reject events with isolated leptons.
- 2 or 3 jets;
- At least one of the jets has to be central $(|\eta| < 1)$
- Δφ(∉_T,j₂) > 0.4.

- 1. Select events with large missing transverse energy and 2/3 jets in the final state;
- 2. Require at least one *b*-tag to reduce the large backgrounds from light-flavor jet production;

Tagging categories

- At least one of the jets has to be b-tagged;
- We employ a new *b*-jet identification algorithm optimized for $H \rightarrow b\bar{b}$ searches: HOBIT⁵;
- Two different HOBIT cuts are used: tight *b*-tag (T), loose *b*-tag (L);
- The selected sample is subdivided in three different tagging categories, according to the number of tight/loose tagged jets:
 - 1T: single tight b-tag;
 - TL: one tight b-tag and one loose b-tag
 - TT: double tight *b*-tag.

⁵J. Freeman, T. Junk, M. Kirby, Y. Oksuzian, T. J. Phillips, F. D. Snider, M. Trovato, J. Vizan, and W. M. Yao, Nucl. Instrum. Methods Phys. Res., Sect. A **697**, 64 (2013).

 $^{21}/_{43}$

- 1. Select events with large missing transverse energy and 2/3 jets in the final state;
- 2. Require at least one *b*-tag to reduce the large backgrounds from light-flavor jet production;
- 3. Model signal and backgrounds:

Signal and Background Model

Electroweak/Top: W+ Heavy Flavor (W+HF), Z+ Heavy Flavor (Z+HF), single top and diboson are modeled by Monte Carlo, as well as $t\bar{t}$:

- Signal: POWHEG
- t-channel: POWHEG
- W/Z+jets: ALPGEN, normalization left unconstrained in the final fit
- $t\bar{t}$, WW/WZ/ZZ, WH/ZH: Pythia
 - $\circ t\bar{t}$ is normalized to the measured cross section.

The parton showering is performed by PYTHIA.

Mistags from Electroweak light flavor:

 Mistag rate matrix model to estimate mis-tagged light flavor Electroweak production (diboson, W/Z+ Light Flavor (W/Z+LF)).

QCD multijet:

- Data-derived model to predict the tagged heavy flavor QCD and mis-tagged light flavor QCD;
- Validated in several control regions.

- 1. Select events with large missing transverse energy and 2/3 jets in the final state;
- 2. Require at least one *b*-tag to reduce the large backgrounds from light-flavor jet production;
- 3. Model signal and backgrounds:
 - QCD multijet modeled with a data-derived method (tag-rate matrix);

Regions Definition

- Mismeasured jets do cause imbalance in the total transverse energy;
- In QCD b-quark pair production, if one b undergoes a semi-leptonic decay, large ∉_T arises.

- TRM (Tag Rate Matrix): $\Delta \phi(\not\!\!E_T, j_2) < 0.4$, 35 Gev $\langle \not\!\!E_T < 70$ GeV, veto lepton;
- QCD: Δφ(∉_T,j₂) < 0.4, ∉_T > 70 GeV, veto lepton;
- EWK: Δφ(∉_T,j₂) > 0.4, lepton events;
- Preselection: Δφ(∉_T,j₂) > 0.4, veto lepton;

QCD Multijet Model

The QCD contribution is estimated by a data-derived model:

- Tag Rate Matrix;
- A tagging rate function is built in the TRM background populated region;
- We use this function to predict the QCD multijet contributions (both HF and LF mistags) in the signal and other control regions.
- We check the predicted shape in the QCD and EWK control regions; the modeling is satisfying;

 $^{26}/_{43}$

Tag Rate Matrix

An **event based** model is used. The tag rate probabilities are parameterized as a function of 6 variables. A separate 6D matrix is derived for each tag catetory: 1T, TL, and TT.

• The tagging rate in each bin of a tagging category:

$$rate = \frac{No. of Tagged Events}{No. of Taggable Events}$$

 $\circ~$ The definition of a taggable event depends on the underlying jets

• To estimate the multijet shape:

multijet = pretag data \times rate - Σ pretag electroweak process \times rate

where, the electroweak processes include top, diboson, W+jets and Z+jets productions.

- 1. Select events with large missing transverse energy and 2/3 jets in the final state;
- 2. Require at least one *b*-tag to reduce the large backgrounds from light-flavor jet production;
- 3. Model signal and backgrounds:
 - QCD multijet modeled with a data-derived method (tag-rate matrix);
 - Mistag light-flavor events modeled with a mistag matrix;

The mistag rate is estimated for each tagging category (1T, TT, TL). The mistag rate for each jet by two different HOBIT cuts are denoted by M_T and M_L , respectively:

- 1T: $M_{Tj1} \times (1 M_{Tj2}) + M_{Tj2} \times (1 M_{Tj1})$
- TT: $M_{Tj1} \times M_{Tj2}$
- TL: $M_{Tj1} \times (1 M_{Tj2}) \times M_{Lj2} + M_{Tj2} \times (1 M_{Tj1}) \times M_{Lj1}$

The mistag rate is applied to light flavor Monte Carlo samples: W+LF, Z+LF and diboson. We also veto jets matched with a HEPG b/c quark.

- 1. Select events with large missing transverse energy and 2/3 jets in the final state;
- 2. Require at least one *b*-tag to reduce the large backgrounds from light-flavor jet production;
- 3. Model signal and backgrounds:
 - QCD multijet modeled with a data-derived method (tag-rate matrix);
 - Mistag light-flavor events modeled with a mistag matrix;
- 4. Use multivariate techniques:

Multivariate Analysis

Since we are looking for a small signal in a very large background, we need to use **Multivariate Techniques**. Several Neural Networks (NN) with different purpose are employed in this analysis:

- a NN to reconstruct the top quark finding the *b*-jet that comes from top decay;
- a NN QCD veto, to reject the QCD multijet production as much as possible. It reduces this background by an order of magnitude;
- two other dedicated NNs:
 - to distinguish signal from W/Z+jets production;
 - \circ to distinguish signal from $t\overline{t}$ background.

combined together in a Final Discriminant used to fit for signal.

- 1. Select events with large missing transverse energy and 2/3 jets in the final state;
- 2. Require at least one b-tag to reduce the large backgrounds from light-flavor jet production;
- 3. Model signal and backgrounds:
 - QCD multijet modeled with a data-derived method (tag-rate matrix);
 - Mistag light-flavor events modeled with a mistag matrix;
- 4. Use multivariate techniques:
 - Reconstruct the top quark;;

Top Quark Reconstruction

A NN is trained to choose which one of the jets in the final state is the one that comes from the top quark decay:

• This tool allow us to recostruct some kinematic variables such as the top quark transverse mass.

- 1. Select events with large missing transverse energy and 2/3 jets in the final state;
- 2. Require at least one *b*-tag to reduce the large backgrounds from light-flavor jet production;
- 3. Model signal and backgrounds:
 - QCD multijet modeled with a data-derived method (tag-rate matrix);
 - Mistag light-flavor events modeled with a mistag matrix;
- 4. Use multivariate techniques:
 - Reconstruct the top quark;
 - Reduce the QCD Multijet background;

QCD veto

A NN is trained to distinguish between QCD Multijet events and other processes:

- Signal sample: W+jets Monte Carlo;
- Background sample: pretag data reweightened by the tag rate probability.

A cut on the output of this NN is choosen in order to reject as much QCD Multijet events as possible:

• After appying the QCD veto, we derive the QCD multijet normalization in the rejected region.

- 1. Select events with large missing transverse energy and 2/3 jets in the final state;
- 2. Require at least one b-tag to reduce the large backgrounds from light-flavor jet production;
- 3. Model signal and backgrounds:
 - QCD multijet modeled with a data-derived method (tag-rate matrix);
 - Mistag light-flavor events modeled with a mistag matrix;
- 4. Use multivariate techniques:
 - Reconstruct the top quark;
 - Reduce the QCD Multijet background;
 - Develop a final discriminant as a combination of a W/Z+jets and $t\bar{t}$ Neural Networks;

W/Z+jets NN

The $W/Z{\rm +jets}$ NN is trained to distinguish between $W/Z{\rm +jets}{\rm -like}$ events and signal events:

- Signal sample: single top s-channel Monte Carlo;
- Background sample: pretag data reweightened by the tag rate probability after the application of the QCD veto.

tt NN

The $t\bar{t}$ NN is trained to distinguish between $t\bar{t}$ events and signal events:

- Signal sample: single top s-channel Monte Carlo;
- Background sample: $t\overline{t}$ Monte Carlo.

Final Discriminant

- Different background composition:
 - 2-jets sample: more W/Z+jets
 - \circ 3-jets sample: more $t\overline{t}$
- We use an optimized combination of the W/Z+jets and tt NNs as final discriminant;
- We fit the data distribution of the final discriminant to extract the single top *s*-channel cross section.

 $^{39}/_{43}$

- 1. Select events with large missing transverse energy and 2/3 jets in the final state;
- 2. Require at least one b-tag to reduce the large backgrounds from light-flavor jet production;
- 3. Model signal and backgrounds:
 - QCD multijet modeled with a data-derived method (tag-rate matrix);
 - Mistag light-flavor events modeled with a mistag matrix;
- 4. Use multivariate techniques:
 - Reconstruct the top quark;
 - Reduce the QCD Multijet background;
 - Develop a final discriminant as a combination of a W/Z+jets and tt Neural Networks;

5. Use the final discriminant to extract cross section.

Cross Section Measurement

- Bayesian approach: binned likelihood;
- Uniform, non-negative prior for signal cross section;
- All the uncertainties and their correlations taken into account
- Expected result:

 $\sigma_{exp}^{s-ch} = 1.00^{+0.58}_{-0.60} \times SM \text{ (stat+syst)}.$

Measured single top s-channel cross section:

 $\sigma_{obs}^{s-ch} = 1.10^{+0.65}_{-0.65} \text{ (stat+syst) pb}.$

This result is consistent with the standard model cross section $\sigma_{\rm SM}^{s-ch}=1.05\pm0.05$ pb.

 $^{41}/_{43}$

Future Plan

- Both the CDF single top *s*-channel measurements are approved:
 - $\circ~$ For the $l\nu b\bar{b}$ see previous talk
- The CDF combination framework is set up:
 - $\circ~$ A very-preliminary result has already been shown at the collaboration;
 - It is still a work-in-progress.
- The discussion with DØ for the Tevatron combination is on-going:
 - $\circ\;$ There is the possibility to come up with a result by September.

Summary

- First time that a single top s-channel measurement is performed in the ∉_T+jets final state;
 - Public web page: http://www-cdf.fnal.gov/~matteoc/internal/schannelMETbb.html
- A legacy measurement from CDF/Tevatron;
- The CDF the $l\nu b\bar{b}$ s-channel measurement has just been approved, will combine the results soon;
- Combination with DØ measurement is planned.