Cerenkov Events Seen by the TALE Air Fluorescence Detector

Tareq AbuZayyad University of Utah

DPF 2013 UC Santa Cruz, CA 08/16/2013

- **TA** Low Energy extension (TALE) Fluorescence Detector.
- TALE Cerenkov Data Set.
- Monte Carlo and Event Reconstruction.
- Performance of Monocular Reconstruction.
- Summary and Outlook.

The Telescope Array Experiment

Telescope Array Collaboration

T Abu-Zayyad¹, R Aida², M Allen¹, R Azuma³, E Barcikowski¹, JW Belz¹, T Benno⁴, DR Bergman¹, SA Blake¹, O Brusova¹, R Cady¹, BG Cheon⁶, J Chiba⁷, M Chikawa⁴, EJ Cho⁶, LS Cho⁸, WR Cho⁸, F Cohen⁹, K Doura⁴, C Ebeling¹, H Fujii¹⁰, T Fujii¹¹, T Fukuda³, M Fukushima^{9,22}, D Gorbunov¹², W Hanlon¹, K Hayashi³, Y Hayashi¹¹, N Hayashida⁹, K Hibino¹³, K Hiyama⁹, K Honda², G Hughes⁵, T Iguchi³, D Ikeda⁹, K Ikuta², SJJ Innemee⁵, N Inoue¹⁴, T Ishii², R Ishimori³, D Ivanov⁵, S Iwamoto², CCH Jui¹, K Kadota¹⁵, F Kakimoto³, O Kalashev¹², T Kanbe², H Kang¹⁶, K Kasahara¹⁷, H Kawai¹⁸, S Kawakami¹¹, S Kawana¹⁴, E Kido⁹, BG Kim¹⁹, HB Kim⁶, JH Kim⁶, JH Kim²⁰, A Kitsugi⁹, K Kobayashi⁷, H Koers²¹, Y Kondo⁹, V Kuzmin¹², YJ Kwon⁸, JH Lim¹⁶, SI Lim¹⁹, S Machida³, K Martens²², J Martineau¹, T Matsuda¹⁰, T Matsuyama¹¹, JN Matthews¹, M Minamino¹¹, K Miyata⁷, H Miyauchi¹¹, Y Murano³, T Nakamura²³, SW Nam¹⁹, T Nonaka⁹, S Ogio¹¹, M Ohnishi⁹, H Ohoka⁹, T Okuda¹¹, A Oshima¹¹, S Ozawa¹⁷, IH Park¹⁹, D Rodriguez¹, SY Roh²⁰, G Rubtsov¹², D Ryu²⁰, H Sagawa⁹, N Sakurai⁹, LM Scott⁵, PD Shah¹, T Shibata⁹, H Shimodaira⁹, BK Shin⁶, JD Smith¹, P Sokolsky¹, TJ Sonley¹, RW Springer¹, BT Stokes⁵, SR Stratton⁵, S Suzuki¹⁰, Y Takahashi⁹, M Takeda⁹, A Taketa⁹, M Takita⁹, Y Tameda³, H Tanaka¹¹, K Tanaka²⁴, M Tanaka¹⁰, JR Thomas¹, SB Thomas¹, GB Thomson¹, P Tinyakov^{12,21}, I Tkachev¹², H Tokuno⁹, T Tomida², R Torii⁹, S Troitsky¹², Y Tsunesada³, Y Tsuyuguchi², Y Uchihori²⁵, S Udo¹³, H Ukai², B Van Klaveren¹, Y Wada¹⁴, M Wood¹, T Yamakawa⁹, Y Yamakawa⁹, H Yamaoka¹⁰, J Yang¹⁹, S Yoshida¹⁸, H Yoshii²⁶, Z Zundel¹

¹University of Utah, ²University of Yamanashi, ³Tokyo Institute of Technology, ⁴Kinki University,

⁵Rutgers University, ⁶Hanyang University, ⁷Tokyo University of Science, ⁸Yonsei University,
 ⁹Institute for Cosmic Ray Research, University of Tokyo, ¹⁰Institute of Particle and Nuclear Studies, KEK,
 ¹¹Osaka City University, ¹²Institute for Nuclear Research of the Russian Academy of Sciences,
 ¹³Kanagawa University, ¹⁴Saitama University, ¹⁵Tokyo City University, ¹⁶Pusan National University,
 ¹⁷Waseda University, ¹⁸Chiba University ¹⁹Ewha Womans University, ¹⁰Chungnam National University,
 ¹²University Libre de Bruxelles, ¹²University of Tokyo, ¹³Kochi University, ¹⁴Hiroshima City University,
 ¹⁵National Institute of Radiological Science, Japan, ¹⁶Ehime University

Telescope Array Experiment

- The Telescope Array (TA) experiment was originally designed for the study of ultra high energy (above ~1x10¹⁸ eV) cosmic rays.
- TA is a follow up experiment to AGASA/HiRes experiments with the goal of improving on both.
- TA Low Energy extension (TALE) aims to lower the energy threshold of the experiment to well below 10^{17} eV.

Telescope Array Experiment

- TA is located in Millard County, Utah, ~200 km southwest of Salt Lake City.
- Surface Detector: 507 scintillation counters 1.2 km spacing. (*run 24/7*)
- Three Fluorescence
 Detectors overlooking SD
 (run only during moonless
 nights):
 - Middle Drum (MD)
 - Black Rock (BR)
 - Long Ridge (LR)

TALE Surface Detector Infill Array

- Infill Array operates 24/7.
- However, when FD is
 on, we get the
 opportunity
 for hybrid
 observation.

TA Fluorescence Detectors

Middle Drum TALE Observatory Site (14+10 Telescopes)

Middle Drum TA/TALE Viewing Range

- TAMD + TALE
- 14 lower telescopes make up TA (Middle Drum) Detector.
- 10 higher telescope (new addition) make up the TA-Low Energy extension Detector.
- TALE telescopes equipped with (HiRes2) FADC electronics.

TALE Cerenkov Data Set

Example event TALE FD designed to look for

- Five (Err.. eight) telescope event.
- Event duration ~ few micro-seconds
- Angular extent long
- ... in case hybrid then even better geometrical reconstruction
- Threshold ~3e16 eV

Energy:	0.530 EeV
Shower max size:	3.565e+08 particles
Shower max depth:	631.247 g/cm ²
Profile Fit χ ² /ndf:	1.2395
v angle: 55.1 degree	s s
Shower azimuthal ar	ngle: 8.2 degrees
Shower zenith angle	: 48.0 degrees
Angle to Magnetic fi	eld: 60.5 degrees

Example Cerenkov event seen by TALE FD

- Most are single telescope
- Event duration ~100ns ~600 ns
- Angular extent short
- Unlikely to trigger surface detector
- Threshold ~3e15 eV

Cerenkov Contribution to Detected Signal

- HiRes-II event set.
- Most events have less than 20% contribution
 from direct *and* scattered
 Cerenkov light.

Cerenkov Contribution to Detected Signal

- TALE Cerenkov event set.
- Most events have more than 90%
 contribution from
 direct Cerenkov
 light.

PRELIMINARY TEST DATA proton MC iron MC 10^{2} 10È $10^{-1}_{-0.4}$ 0.5 0.7 0.9 0.6 0.8 direct Ckov npe / total detected npe

Cerenkov events seen by TALE Fluorescence Detector

Cerenkov events data rate

- Vast majority of triggered events are Cerenkov (lower energy).
- Still dominant, even after removing "Cerenkov Blasts"

Monte Carlo and event Reconstruction

TALE fluorescence detector MC

- Added support of TALE telescopes to existing MC code used by TA-MD detector for the past 6 yrs.
 - Identical optics; different electronics.
 - An updated description of the shower lateral width was *required* for the treatment of Cerenkov events.
 - Treatment of Cerenkov in detector MC is still under development.
 - Testing / Verification studies are on-going.

Shower lateral width and image of observed events

 # triggered PMTs divided by angular tracklength

Width of observed shower image

Lateral width of EAS

- Separate treatment for fluorescence and Cerenkov photons.
- Based on parameterizations in Lafebre et al. (arXiv:0902.0548)
- Fluorescence uses all particle NKG like function
- Cerenkov uses NKG like function for a fixed electron energy:
 - Age dependent
 - Altitude dependent
 - Viewing angle dependent

TALE fluorescence detector MC

- A different approach to simulating the detector response to Cerenkov light was also implemented:
- Corsika / IACT (arXiv:0808.2253 [astro-ph])
 - Full 3D MC shower development
 - Cerenkov photons production
 - Cerenkov photons detection (sphere surrounding telescope mirror)
- We can test our reconstruction code (and parameterizations) *against an external, "true MC" simulation*.
- Work in Progress, will report on in the future.

TALE Event Reconstruction (PMT Timing)

time extracted from FADC trace vs. MC time

- Cerenkov events are "fast". Need best possible timing
- TALE electronics has 100 ns FADC sampling
- Based on MC study: We can get ~5ns timing for bright signals and better than ~20ns for most/all tubes.

TALE Event Reconstruction (EAS Parameters)

- Primary particle energy (*E*)
- Shower Geometry:
 - A line segment from the top of the atmosphere, ~47km, to the ground.
 Rp_vec[3], **ut_hat**[3]
- Shower Longitudinal Profile:
 - Parametrization given by a Gaisser-Hillas function with four parameters (*N_max*, *x_0*, *x_max*, *lambda*)
 - *x* [g/cm²] is the atmospheric slant depth along the shower track.
 - *N*(*x*) is the number of charged particles at depth x
- A total of eight free parameters:
 - $E \rightarrow N_max$
 - ut_hat is a unit vector & is normal to Rp_vec.

TALE Event Reconstruction (Standard Procedure)

- 1) Fit Shower-Detector plane
- 2) Fit Rp, psi angle
 - Monocular timing
 - Monocular timing; with shower core location provided by Surface Detector.
- 3) Fit Shower profile and energy
 - Geometry fixed by steps 1, 2
 - GH lambda parameter typically fixed to a nominal value.

Reconstruction of TALE Cerenkov Events (Profile Constrained Fit)

- 1) Fit Shower-Detector plane
- 2) Fit Rp, psi angle
 - Profile Constrained Geometry Fit (As in HiRes1 recon.):
 - *Assume* a known shower profile (xmax).
 - Scan psi angle, use timing for Rp determination.
 - For each trial geometry fit observed npe (i.e. profile fit)
 - Find best geometry for given shower profile.
- 3) Fit Shower profile and energy
 - Geometry fixed by steps 1, 2
 - *Release xmax* parameter. Perform a standard profile fit. 25

Performance of Monocular Reconstruction

Shower Rp resolution

ShowerImpactparameter

Shower psi angle resolution

ShowerAngle inthe plane

-1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 log_(E[EaV])

-2

-2.1

Effect of changing lateral width in the reconstruction

Real data
reconstructed
with three
different
assumptions
about lateral
width.

Shown are differences in reconstructed psi from each fit.

Summary and Outlook

- We developed a new event reconstruction technique which allows us to use a Fluorescence detector as an Imaging Air Cerenkov Telescope
- The quality of the reconstruction and possible systematic effects are still under study.
- TALE as a Cerenkov detector can reach energies lower than 10¹⁶ eV with very high statistics.