Constraints on Dark Matter Annihilation in Clusters of Galaxies from Diffuse Radio Emission

Emma Storm¹ Tesla Jeltema^{1,2}, Stefano Profumo^{1,2}, Lawrence Rudnick³

¹Department of Physics, UCSC

²Santa Cruz Institute for Particle Physics, UCSC

³Department of Physics and Astronomy, UMN

DPF, August 15th, 2013

Clusters of Galaxies

Bullet Cluster. Credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

- Galaxies
- Intracluster Medium (ICM)
- Dark Matter

Diffuse Radio Emission in Clusters

- Radio Haloes
 - diffuse synchrotron emission
 - ${\sim}1~{\rm Mpc}$
 - typically found in merging clusters
- Mini-Haloes
 - hundreds of kpc, found in relaxed (cool-core) clusters

Coma Cluster. Radio contours overlaid on X-ray. Brown & Rudnick, 2011, MNRAS, 412, 2.

Most clusters: no diffuse radio emission! Use radio UL to constrain annihilation cross section.

15 Aug 2013 3 / 12

Diffuse radio is due to synchrotron radiation

 \rightarrow Cosmic ray electrons/positrons + μ G-scale magnetic fields present

Dark matter annihilation products include electrons/positrons

 \Rightarrow Calculate UL on $\langle \sigma v \rangle$ required for DM annihilation to produce observed radio emission/UL

・ロト ・ 同ト ・ ヨト ・ ヨト

Inputs into Model

- Cluster Mass (observable)
 - larger mass \rightarrow smaller $\langle \sigma v \rangle$
- Radio Flux, Detection or UL (observable)
 - smaller $S_{\nu} \to \text{smaller } \langle \sigma v \rangle$
- Magnetic Field Value (inferable from observations)
 - larger B \rightarrow smaller $\langle \sigma v \rangle$
- Substructure Model *(literature)*
 - more substructructre \rightarrow smaller $\langle \sigma v \rangle$
- Dark Matter Mass, Final State (free parameters)

・ 同 ト ・ ヨ ト ・ ヨ ト

Cluster Sample

Name	ν (MHz)		$B_0 \ (\mu G)$
A0576	327	UL	
A2199	327	UL	11.7
A2244	327	UL	
Zw1742	327	UL	
Perseus	1400	D (MH)	25
Ophiuchus	1400	D (MH)	
A2029	1400	D (MH)	16.0
Coma	1400	D(H)	4.7
AWM7	1400	UL	
M49	1400	D	
NGC4636	1400	D	

UL = Upper Limit, D = Detected Diffuse Emission, MH = Mini Halo, H = Halo (See Storm, et al, 2013, ApJ, 768, 106 for references.)

3

6 / 12

イロト イヨト イヨト イヨト

Results for Full Cluster Sample

NFW dark matter profile. Radio emission measured at different frequencies. Storm, E., Jeltema, T. E., Profumo, S., & Rudnick, L., 2013, ApJ, 768, 106

7 / 12

Effects of Annihilation Channel

NFW dark matter profile.

< 🗇 🕨

ъ

Effects of Substructure

Emma Storm (UCSC Physics)

15 Aug 2013 9 / 12

ъ

イロト イヨト イヨト イヨト

Effects of Substructure

< (T) >

Uncertainties, Comparison to Limits from Gamma Rays

NFW dark matter profile.

15 Aug 2013

11 / 12

Constraints on Dark Matter Annihilation in Clusters from Radio

- Diffuse radio emission \Rightarrow cosmic rays, magnetic fields
- Radio can be used to probe dark matter annihilation
- Constraints on $\langle \sigma v \rangle$ from radio are comparable to or better than limits from gamma rays
- Different samples of clusters are better for radio analysis vs gamma ray analysis
- Primary uncertainty: magnetic fields

12 / 12

- 同下 - モト - モト