Legacy Photon Results from CDF

Ray Culbertson, FNAL

Diphoton Cross Section

Phys Rev. Lett. 110, 101801 (2013)

Diphoton Production

 $gg \rightarrow \gamma\gamma$ "Box": Leading at the LHC

 $gq \rightarrow \gamma\gamma q$ Compton with radiation: $\alpha_s \alpha^2$

Fragmentation: α^2 Suppressed by isolation

Diphoton Selection/Efficiency

- Full Dataset
 E_T > 15, 17 GeV
 |η| < 1 (central)
- $\Delta R > 0.4$

Efficiencies
PYTHIA + GEANT, iterated
~35%, small variations
largest systematic, 6%, underlying event modeling

Diphoton Backgrounds

- Backgrounds from jets with a leading π^0
- BG subtraction by track isolation, cone R=0.4
- allow for correlations between photons
 → subtraction using a matrix of track iso efficiences
- largest systematics from modeling iso efficiencies

15/13

PYTHIA LO parton-shower calculation – including γγ and γj with radiation [T. Sjöstrand *et al.*, Comp. Phys. Comm. **135**, 238 (2001)]

- SHERPA LO parton-shower calculation with improved matching between hard and soft physics [T. Gleisberg *et al.*, JHEP **02**, 007 (2009)]
- MCFM fixed-order NLO calculation including non-perturbative fragmentation at LO [J. M. Campbell *et al.*, Phys. Rev. D **60**, 113006 (1999)]
- DIPHOX fixed-order NLO calculation including fragmentation at NLO [T. Binoth *et al.*, Phys. Rev. D 63, 114016 (2001)]
- ♦ RESBOS low-P_T analytically resummed calculation matched to high-P_T NLO [T. Balazs *et al.*, Phys. Rev. D 76, 013008 (2007)]
- NNLO calculation with q_T subtraction [L. Cieri *et al.*, http://arxiv.org/abs/1110.2375 (2011)] DPF 2013

Energy scaleResonances

Vertical scales are not the same

All models don't describe extremely small massesAll models do well at mid to high masses

Diphoton Vector Sum P_T

• At low P_T, sensitive to soft radiation

•Shoulder indicates higher orders

Diphoton Vector Sum P_T

Pythia, DIPHOX, RESBOS, MCFM tend to miss the shoulder, SHERPA and NNLO do well
RESBOS and SHERPA do well with soft radiation

• small Δφ sensitive to higher orders

Large Δφ sensitive to soft radiation

Many more available!

• Low P_T and high $\Delta \phi$ show the same pattern for low energy radiation

• P_T should r and small $\Delta \phi$ show the same pattern for higher orders DPF 2013 12 8/15/13

Photon and Heavy Flavor Cross Section

Phys. Rev. Lett. 111, 042003 (2013)

Photon and Heavy Flavor

Compton scattering ~ $\alpha \alpha_S$

- Probes the heavy flavor content in the proton
 - gluon evolution
 - intrinsic H.F.
 - \circ important at low $E_{\rm T}$

 Tests final state gluon splitting to heavy flavors
 important at high E_T

Photon+H.F., Photon Selection

• Full dataset

• $E_{T} > 30 \text{ GeV}$ • $|\eta| < 1$ (central) • ANN photon ID • isolation • shower shape • Had/EM • fit ANN to measure jets faking photons background

•2-5% uncertainty due to modeling of isolation energy in templates

Photon+H.F., Jet Selection

• $E_T > 20 \text{ GeV}$ $|\bullet|\eta| < 1.5$ • JetClu cone 0.4 • Secondary vertex tag Background subtraction by fitting secondary vertex mass to MC templates • efficiency $\sim 20\%$ (b) and ~6% (c)

• 20% systematic uncertainty on track efficiencies, varies the template shapes

- NLO direct-photon and fragmentation subprocesses at O(αα_s²), CTEQ6.6M PDFs [T.P. Stavreva and J.F. Owens, PRD **79**, 054017 (2009)]
- ♦ SHERPA 1.4.1 tree-level matrix element (ME) with one photon and up to three jets, merged with parton shower, CT10 PDFs [T. Gleisberg *et al.*, JHEP 02, 007 (2009)]
- ↔ **PYTHIA** ME subprocesses: gQ → gQ, qq→gg, with gluon splitting: g → QQ, CTEQ5L PDFs [T. Sjöstrand et al., JHEP **05**, 026 (2006)]

Photon and b quark

Vertical scales are not the same

8/15/13

NLO low at high E_T - gluon splitting at tree-level
k_T and SHERPA have moderate agreement
PYTHIA with gluon splitting rate scaled matches shape

Photon and c Quark

Vertical scales are not the same

•NLO low at high E_T - gluon splitting at tree-level

- k_T agrees well, SHERPA has moderate agreement
- PYTHIA with gluon splitting rate scaled matches shape

Z Decays to Photons and Neutral Pions

Ζ

Rare and Forbidden Z decays

Small in the SM, Similar to $W^+ \rightarrow \pi^+ \gamma$

Tests:

- Pion form factor
- Physics beyond the SM...

Not allowed in SM - Landau-Yang theorem, Bose-Einstein statistics Tests:

- Commutativity of gauge theory
- Physics beyond the SM...

Selection, Efficiency

• Full dataset

2 γ, E_T > 15 GeV
|η| < 1 (central)
ANN selection

In this energy range π⁰'s have an efficiency 5% smaller than a photon
Signal Monte Carlo created by reweighting angular distribution in a Z decay

•Subtract simulated Drell-Yan contamination

 fit the D-Y subtracted mass spectrum to an exponential and 2nd degree polynomial

$Z \to \gamma \gamma / \pi^0 \gamma / \pi^0 \pi^0$ Search	CDF Run II Preliminary, 10.0 $\rm fb^{-1}$
Process	Number of Events for $80 < m_{\gamma\gamma} < 102 \text{ GeV}$
Drell-Yan	54 ± 5
$\gamma\gamma, \gamma j$, and jj	2251 ± 61
Total background	2305 ± 61
Data	2294

DPF 2013

• Final limit process includes signal line shape

Final result reported as BR Leading systematics 6% luminosity

CDF Run II Pr	elimina	ary			$\int \mathcal{L} =$	= 10.0 fb ⁻¹
	95% C.L. Limits					
Signal	Expected $(\times 10^{-5})$					Observed
Process	-2σ	-1σ	Median	$+1\sigma$	$+2\sigma$	$(\times 10^{-5})$
$\operatorname{Br}(Z \to \gamma \gamma)$	0.88	1.19	1.66	2.34	3.20	1.66
${ m Br}(Z o \pi^0 \gamma)$	1.21	1.63	2.28	3.21	4.37	2.28
$\operatorname{Br}(Z \to \pi^0 \pi^0)$	0.93	1.23	1.72	2.41	3.29	1.73

3.1 times smaller than world's best
2.3 times smaller than world's best
first reported

•SM expectations for BR($Z \rightarrow \pi^0 \gamma$): $10^{-9} - 10^{-12}$

CDF continues to report many legacy measurements

Diphoton Cross Section

most complete kinematics and comparisons

Photon and Heavy Flavor Cross Section

high statistics, new model

Z Decays to Two Reconstructed Photons

new world's best limits

Many more legacy measurements to come...

8/15/13

Photon + H.F. Total Cross Section

	Integrated cross section (pb)				
	γ+b+X	$\gamma + c + X$			
Data	19.7 ±0.7 _{stat} (+5.0–4.2) _{syst}	132.2 ±4.6 _{stat} (+13.2–19.2) _{syst}			
PYTHIA	19.5	106.0			
SHERPA	29.4	173.9			
NLO	27.3 + 2.3 - 1.5	152.6 + 12.2 - 9.6			
k _T factorization	25.2	106.4			

	Integrated cross section (pb)
Data (CDF)	$12.3 \pm 0.2_{stat} \pm 3.5_{syst}$
RESBOS	11.3 ± 2.4
DIPHOX	10.6 ± 0.6
MCFM	11.5 ± 0.3
SHERPA	12.4 ± 4.4
ργτηια γγ+γj	9.2
NNLO	11.8 + 1.7 - 0.6

CDF Run II Prelimina	ary					$\int \mathcal{L} = 10.0 \; \mathrm{fb^{-1}}$
	Signal			Background		
Systematic Uncertainties (%)		$Z \rightarrow \gamma \gamma$	$Z ightarrow \pi^0 \gamma$	$Z ightarrow \pi^0 \pi^0$	Drell-Yan	Non-Resonant
Luminosity	6	\checkmark	✓	✓	✓	
Z Cross Section	6	\checkmark	\checkmark	\checkmark	\checkmark	
PDF	5	\checkmark	\checkmark	\checkmark		
ISR/FSR	3	\checkmark	\checkmark	\checkmark		
Energy Scale	0.2	\checkmark	\checkmark	\checkmark		
Trigger Efficiency	1	\checkmark	\checkmark	\checkmark	\checkmark	
z-Vertex	0.2	\checkmark	\checkmark	\checkmark	\checkmark	
Photon ID Efficiency	4	\checkmark	\checkmark	\checkmark		
π^0/γ Efficiency	$2~{ m per}~\pi^0$		\checkmark	\checkmark		
Electron Fake Rate	2				\checkmark	
Sideband Fit	2.7					\checkmark