Studies of Beam Loss Effect on Silicon Strip Modules in ATLAS Detector

A.A. Grillo

for

P. Rose, C. Betancourt, V. Fadeyev, H.F.-W. Sadrozinski, A. Seiden, E. Spencer, M. Wilder SCIPP - UCSC

Beam Loss Issues

- At design luminosity the LHC will contain ~10¹¹ protons per bunch with a bunch spacing of 25 ns.
- If the beam becomes misaligned, it can scrape collimators or beam pipe, sending a spray of particles into the ATLAS detector.
- Before the beam loss monitors force a beam dump, the silicon strip detectors (the ATLAS SCT) may experience a large deposition of charge.
- Can this cause damage to the detector?

Vulnerabilities of the SCT Detector Module

- Each SCT module is made up of the components shown in the picture below.
- All components inside the detector volume have been thoroughly tested for radiation hardness such that the extra radiation damage from a beam loss can be tolerated.
- Two components, however, may have a problem with a large instantaneous charge deposition.
 - A large current or voltage spike at the ABCD readout IC input may damage its first stage.
 - Large charge collection at the implant strip may cause breakdown of the coupling capacitor between the implant and readout strips.
 - Either may cause permanent damage.

ATLAS SCT Module

Previous Tests

- Several tests have been conducted to test the limits of these two vulnerabilities:
 - The ABCD has an input spec limit of 450 V and 5 nC in 25 ns.
 - It was not clear how this compares to expected conditions of a realistic beam loss but this limit was tested on single channels and no failures were found up to the voltage limit & twice the charge limit. [1]
 - The dielectric forming the coupling capacitor between the implant strip and aluminum readout strip is spec'd to have a breakdown voltage ≥ 100
 - V. Exceeding this may cause the channel to fail.
 - Tests have been performed on sensor strips using lasers to emulate the charge deposition of minimum ionizing particles.
 - Voltages in excess of 100 V have been measured with charge deposition equivalent to ≥10⁶ minimum ionizing particles (MIPs) per strip (spot size ~27 strips) without seeing breakdown, but damage has been seen at higher charge levels. [2,3]

Study of Beam Loss Effect on Silicon Detectors

This Study

- This study attempts to incorporate the electrical contributions of the entire module and consider realistic beam loss scenarios with regard to expected charge deposition distributions.
- Given the difficulty in creating the expected high density spray of particles into a module, this study will rely on detailed simulations.
- However, the models we have used are based upon sensor and ASIC measurements we have made in our lab.
- This study is still in progress so the results are preliminary, however, they show some interesting features.

Tests & Simulations of ABCD Front-end

- With the present ABCD IC, the base-emitter junction of the front transistor handles any excess current or voltage.
 - We then chose the simplest model to simulate the ABCD response, namely a diode with series resistance and breakdown voltage tuned to match the response we saw with our test setup.

Expected Distribution of Charge Deposition

- A group from University of Sydney has simulated the likely beam loss scenario as reported in an ATLAS note [4]:
 - They assumed 0.1% of the beam (10⁸ protons) scraping the beam pipe or the TAS (Target Absorber Secondaries) collimator, tracking the resulting secondaries through the SCT.
 - The two plots below show the resultant distribution of charge across the inner SCT barrel for one beam bunch.
 - The charge deposition is fairly uniform; using a scale of 3.5 fC/MIP, their results equate to a distribution of incident particles ranging from ~0.4x10⁵ MIPs to 0.5x10⁶ MIPs with 0.2x10⁶ MIPs most probable.

L L

C

S

Beam Loss Timing

- An LHC bunch will pass every 25 ns with each bunch scraping the obstruction.
- Many timing sequences are possible.
- We assume for now a drift of the beam gradually scraping more of the bunch fringe until the beam abort is activated.
 - Then one cycle of the complete ring to send all bunches to the dump.
- An increasing number of MIPs will then hit a module every 25 ns until the beam is cleared, which takes ~90 μs.

Simulation Details

We used SPICE to simulate the response of a full SCT module to such a beam loss scenario.

Ĺ

C

ហ

 Each strip was modeled as a distributed circuit using SPICE components.

Study of Beam Loss Effect on Silicon Detectors

Details of Sensor Behavior are Included

- The charge injection scheme has two components²
 - Component 1 models the timing structure of the beam.
 - Component 2 models the dependence of the charge collection on the bias voltage.

 For bias voltages below the full depletion value, the amount of collected charge decreases due to smaller depletion depth.

Study of Beam Loss Effect on Silicon Detectors

Simulation Sequence

$$Q = MIPs * 80\frac{e^{-}}{\mu m} * 289.5 \ \mu m * 1.6 * 10^{-19}\frac{C}{e^{-}}$$
$$t_{cc} = 10 \ ns \ * \sqrt[3]{MIPs}$$

Study of Beam Loss Effect on Silicon Detectors

A.A. Grillo

Electrical Response of Module to "Slow" Beam Loss

- Simulation results for beam loss and dump in 100 ms reaching a peak of 0.54x10⁶ MIPs/strip/25ns.
 - Note that the bias voltage quickly drops as the charge is injected.
 - This is because the capacitance of the bias filter is depleted of charge and the power supply cannot maintain the voltage.
 - This drop in bias voltage and field shielding by the large amount of charge deposited greatly limits the charge collection.
- The voltage across the coupling capacitor remains < 25 V and the ABCD input current remains <70 μA (1.8 pC/25 ns) both well below spec

Electrical Response for Two Other Conditions

0.1 ms Scenario

100 ms Scenario with Irradiated Sensor

• Even with a 0.1 ms scenario, the bias still drops quickly enough to limit the charge collection keeping the coupling capacitor voltage and ABCD current within a safe range.

DPF 2013 16-Aug-13

Study of Beam Loss Effect on Silicon Detectors

A.A. Grillo

Electrical Response for Several Time Evolutions

- These plots show the electrical response of the module for the same peak loss of 5.4x10⁵ MIPs/bunch but varying the speed at which the loss evolves.
 - The data points span full evolution times of 100 ms to 0.01 ms
- Even with the fastest rate, the implant voltage and the ABCD input current remain in very safe ranges.

DPF 2013 16-Aug-13

Study of Beam Loss Effect on Silicon Detectors

A.A. Grillo

Careful if Limiting Charge Deposition to One Strip

- Here are the results of simulating a laser pulse hitting a single strip with the same intensity.
 Single Strip Simulation, 5.4x10^5 MIPs Current Collected at Center of Implant Strip
 - Note that the backplane voltage (blue curve above) does not decrease and the effective bias voltage (green curve above) only decreases slightly since the implant voltage is increasing.
 - The voltage across the coupling capacitor (blue curve below) now reaches 70 V
 (> 2x the full module case) and the ABCD input current (red curve below is 6x greater.

Larger Charge Deposition onto One Strip

- Here is the case of 1x10⁷ MIPs on one strip.
 - Now the voltage across the coupling capacitor (blue curve below) exceeds 90 V and the ABCD input current (red curve below) reaches 17 mA – still within spec limits but much closer to the maximum allowable.
 - Actually, the voltage across the coupling capacitor would have reached a much higher voltage but the simulation included a model for capacitor breakdown at 100 V, which activated.
 - We're not sure why the voltage appears to limit at 90 V instead of 100 V. This needs further study.

Conclusions & Continuing Work

- We expect beam loss scenarios to deposit large amounts of charge across the entire sensor.
- Depending upon the time evolution, this distribution of charge results in several mitigating phenomena:
 - Charge collection time increases.
 - Bias voltage decreases due to the finite charge stored on the filter capacitors and to the 2 mA current limit of the bias supply thus reducing the amount of charge collected.
- Depending upon the time evolution of the beam loss, the resulting module response may provide some self-protection.
- Subjecting only a small number of strips to large charge deposition may show very different results. Are they realistic?
- More variations of beam loss intensities along with time evolutions must be simulated to search for limits of safe operation.
- Upgraded detectors must take care with biasing so as not to lose these self-protection aspects of the full system.

References

- 1. A. Kuhl, V. Fadeyev, A.A. Grillo, F. Martinez-McKinney, J. Nielsen, E. Spencer, M. Wilder, ATLAS ABCD hybrid fatal charge dosage test, 2011 JINST 6 C12021.
- 2. H. F.-W. Sadrozinski *et al.*, Punch-through protection of SSDs, *Nucl. Instrum. Meth*ods A699 31 (2013).
- 3. K. Hara *et al.*, Beam splash effects on ATLAS silicon microstrip detectectors evaluated using 1-w Nd:YAG laser, *Nucl. Instrum. Meth*ods A541 15 (2005).
- 4. N. Patel *et al.*, Charge deposition in the SCT due to beamloss, ATLAS Note ATL-INDET-PUB-2013-002.

