

Meeting of the American Physical Society Division of Particles and Fields August 13 - August 17, 2013

Quarkonia production and polarisation at LHCb

E. Santovetti

Universita' di Roma Tor Vergata and INFN on behalf of the LHCb Collaboration

Outline

- Detector and data sample
- J/ ψ , Y(nS) production at $\sqrt{s}=8$ TeV
- χ_{cj} production
- J/ψ polarisation
- Λ_b polarisation

Designed for CP violation and rare decays of heavy mesons

Single arm spectrometer, 40% of bb pairs produced in the acceptance.

Unique kinematic region: high rapidity (2.0 < y < 4.5) and low pT

Motivation

- Measurements of heavy-quark and quarkonia provide powerful tests on QCD models
- Current models (NRQCD, CSM, COM, k_T factorization) have very different predictions, not always in agreement with experimental measurements
 - production of prompt J/ ψ , ψ (2S), Y, χ_c
 - their polarisations
- LHCb can provide essential and unique contribution

J/ψ polarisation at CDF PRL 99 (2007) 132001 arXiv:0704.0638

4

J/ ψ production at $\sqrt{s} = 8$ TeV

JHEP 06 (2013) 064

→ Previous measurements at 7 TeV and 2.76 TeV EPJC71 (2011) 1645; JHEP 02 (2013) 041

Measurement of the double differential production cross-section: bin in y and pT

About 2.6 M signals in pT < 14 GeV/c and 2.0 < y < 4.5

Prompt and from *b* decays components separated using pseudo-decay time t_{j}

Simultaneous fit of the mass and the pseudo-decay time

Efficiency evaluated with MC simulation and validated on data

Systematic uncertainty ~ 7% dominated by luminosity and trigger efficiency

LHCD

JHEP 06 (2013) 064 Y(nS) production at $\sqrt{s} = 8$ TeV \rightarrow previous measurements at 7 TeV EPJC72 (2012) 2025 Measurement of the double differential cross-sections for the three Y states Candidates / (25 MeV/ c^2) $B^{1S} \times \frac{d^2 \sigma^{1S}}{dp_T dy} [nb/(GeV/c)]$ Y(1S) data -2.0 < v < 2.5LHCb (a) 1⊧ -2.5 < v < 3.0 $\sqrt{s} = 8 \text{ TeV}$ 10000 -3.0 < y < 3.5< v < 4.0N(1S) ≃44K 0 < v < 4.58000 10° $N(2S) \simeq 11K$ $N(3S) \simeq 5K$ 6000 104000 10^{-1} 2000 LHCb $\sqrt{s} = 8 \text{ TeV}$ 10 9000 10000 -11000 5 10 $p_{_{\mathrm{T}}}$ [GeV/c] $m(\mu^+\mu^-)$ [MeV/ c^2] NLO CSM: PRL98 (2007)252002 NNLO* CSM: PRL101(2008)152001 $B^{1S} \times \frac{d\sigma^{1S}}{dp_T} [nb/(GeV/c)]$ $B^{3S} \times \frac{d\sigma^{3S}}{dp_T} [nb/(GeV/c)]$ 10 (a) $B^{2S} \times \frac{d\sigma^{2S}}{dp_T} [nb/(GeV/c)]$ 10 (c) 10 LHCb data, 2.0<y<4.5 LHCb data, 2.0<y<4.5 LHCb data, 2.0<y<4.5 E(b) Direct NNLO* CSM, 2.0<y<4.5 Direct NNLO* CSM, 2.0<y<4.5 Direct NNLO* CSM, 2.0<y<4.5 Direct NLO CSM, 2.0<v<4.5 Direct NLO CSM, 2.0<v<4.5 Direct NLO CSM, 2.0<v<4.5

preliminary

10

15

7

í10⁻ 10 10 HCb preliminary b preliminary 10^{-10} 10-10-2 10⁻³ 10^{-3} 10-3 LHCb LHCb LHCb $\sqrt{s} = 8 \text{ TeV}$. L=50.6 pb⁻¹ $\sqrt{s} = 8 \text{ TeV}$. L=50.6 pb⁻¹ $\sqrt{s} = 8 \text{ TeV}, L = 50.6 \text{ pb}^{-1}$ 10-10-15 5 10 15 5 p_{τ} of $\Upsilon(1S)$ [GeV/c] p_{τ} of $\Upsilon(2S)$ [GeV/c] $p_{\rm T}$ of $\Upsilon(3S)$ [GeV/c] NNLO is necessary

Better agreement with Y(3S), less feed-down contributions

LHCh

$\chi_{cj}(1P)$ production ratio LHCb-PAPER-2013-028 ArXiv:1307.4285 \rightarrow previous measurements without converted photons ECAL χ_c identified through the decay $\chi_c \to J/\psi \ (\to \mu \mu) \ \gamma$ extrapolation Measurement using photons that convert in the detector and uster applying bremsstrahlung correction bremsstrahlung conversion Measurement with 1 fb⁻¹ integrated luminosity (2011) in bin of pT and integrating on rapidity 2.0 < y < 4.5The use of the converted photons allows to clearly separate χ_{c1} and χ_{c2} : lower statistics but better mass resolution Converted photons Candidates / (2.4 MeV/ c^2) LHCb (a) $\sqrt{s} = 7 \text{ TeV}$ PLB714 (2012) 215 non-converted photons $4 < p_{_{ m T}}^{{ m J/\psi}} < 5 ~{ m GeV}/c$ MeV/c² 8000 LHCb (b) 000 $\sqrt{s} = 7 \text{ TeV}$ 7000 non-converted photons 9.2 6000 Events 5000 4000 500 3000 2000 all events 1000 200 400 500 100 300 600 700 200 300 400 500 600 700 800 900 $M(\mu^{+} \mu^{-} \gamma) - M(\mu^{+} \mu^{-}) [MeV/c^{2}]$ $M(\mu^+\mu^-\gamma) - M(\mu^+\mu^-)$ [MeV/ c^2]

$\chi_{cj}(1P)$ production ratio

LHCb-PAPER-2013-028 ArXiv:1307.4285

 $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ decreases with J/ ψ pT

Good agreement with (N)LO NRQCD predictions for pT > 4 GeV/c

Systematic uncertainty (~ 6%) dominated by photon efficiency

Large uncertainty (not included) from the unknown polarisation of the two χ states

First evidence of the χ_{c0} state at hadron collider with a significance of 4.3 σ

J/ ψ polarisation at $\sqrt{s} = 7$ TeV

LHCb-PAPER-2013-008 arXiv:1307.6379v2

Motivation

NLO NRQCD predicts J/ ψ (Y) production cross section very well, but not polarisation. Important input to validate different models

Large uncertainty of cross-section measurement due to unknown polarisation

Strategy

Full angular analysis to determine polarisation parameters (λ_{θ} , $\lambda_{\theta\phi}$, λ_{ϕ})

J/ ψ polarisation at $\sqrt{s} = 7$ TeV

analysis key points

Crucial ingredient of the analysis is the knowledge of the **detector angular efficiency**. Angular efficiency distortion can result in artificial polarisation

Important also to reject the combinatorial **background** contamination

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{LHCb Simulation} \\ 3 < p_{T} < 4 \text{ GeV}/c \\ 0.14 \\ 0.12 \\ 0$

LHCb-PAPER-2013-008

arXiv:1307.6379v2

Weighted log likelihood used to extract the polarisation parameters and to subtract the background

$$\log L = \sum_{i=1}^{N_{tot}} \omega_i \log \left[\frac{P(\cos \theta_i, \phi_i | \lambda_{\theta}, \lambda_{\theta\phi}, \lambda_{\phi}) \times \epsilon(\cos \theta_i, \phi_i)}{\operatorname{Norm}(\lambda_{\theta}, \lambda_{\theta\phi}, \lambda_{\phi})} \right]$$

 ω_i from a sWeight-like technique

efficiency $\epsilon(\cos\theta,\phi)$ estimated with simulation and corrected using $B^{\pm} \rightarrow J/\Psi K^{\pm}$ Norm(): normalization function, evaluated with the unpolarised MC sample Data sample: 370 pb⁻¹ at 7 TeV

J/ ψ polarisation at $\sqrt{s} = 7$ TeV Results

LHCb-PAPER-2013-008 arXiv:1307.6379v2

LHCb

 $\sqrt{s} = 7 \text{ TeV}$

0.15

0.05

-0.05 -0.

-0.15 -0.2

-0.25

HX Frame

Measurement performed in bins of J/ψ pT and rapidity

Since in HX frame $\lambda_{\phi} \approx 0$, $\lambda_{\theta}(HX) \approx \lambda_{inv} = (\lambda_{\theta} - 3\lambda_{\phi})/(\lambda_{\theta} - \lambda_{\phi})$ is a unambiguous indicator of the polarisation λ_0

J/w meson results to have a weak longitudinal polarization

Uncertainty dominated by the systematic associated with efficiency correction

J/ ψ polarisation at $\sqrt{s} = 7$ TeV

LHCb-PAPER-2013-008 arXiv:1307.6379v2

Comparison with theory

Measured λ_{θ} contradicts the **CSM** predictions for direct J/ ψ production, both in size of the polarization parameters and pT dependence.

Concerning the **NRQCD** models, predictions can result in a better agreement with LHCb results (it depends on the **scheme** used to evaluate the non-perturbative matrix elements)

Agreement with ALICE's results with large uncertainty in ALICE

J/w cross section at 7 TeV update LHCb-PAPER-2013-008 arXiv:1307.6379v2

Polarisation affects the efficiency (acceptance) in cross-section measurement.

The measurement of the J/ Ψ production cross-section has been **updated**, in light of the polarisation measurement.

 σ (prompt J/ψ ; $p_{\rm T} < 14 \,{\rm GeV/c}$, 2.0 < y < 4.5) = $9.46 \pm 0.04 \pm 0.53^{+0.86}_{-1.10} \,\mu{\rm b}$

previous measurement: $\sigma(\text{prompt } J/\psi; \ p_{\text{T}} < 14 \,\text{GeV/c}, \ 2.0 < y < 4.5) = 10.52 \pm 0.04 \pm 1.40^{+1.64}_{-2.20} \,\mu\text{b}$

14

PLB 724 (2013) 27-35

$\Lambda^0_b \rightarrow J/\psi \wedge decay$ amplitudes and Λ^0_b polarization

 Λ_{b}^{0} in *pp* collisions expected to be transversally polarized (HQET) **Not yet measured** at a hadron collider

 $\Lambda_{b}^{0} \rightarrow \Lambda J/\psi \ (\frac{1}{2} \rightarrow \frac{1}{2} + 1) \text{ with } \Lambda \rightarrow p\pi \text{ and } J/\psi \rightarrow \mu^{+}\mu^{-}$

n normal to the production plane θ angle between $\mathbf{p}(\Lambda)$ -**n** in the Λ_b rest frame θ 1, ϕ 1 in the Λ rest frame θ 2, ϕ 2 in the J/ Ψ rest frame

Decay dynamics is completely described looking at 5 angles Integrating over azimuthal ϕ_1 and ϕ_2 , we simplify the decay distribution and we still are sensitive to polarization and squared amplitudes

15

$\Lambda^0_b \rightarrow J$	/ψ Λ	decay f	ormalis	sm rential decay	v rate	
$\frac{d\Gamma}{d\Omega_3} = \frac{1}{16\pi} \sum_{i}^{\prime}$	$\sum_{i=0}^{7} f_i(\mathcal{M})$	$ \mathcal{M}_{\frac{1}{2},0} ^2, \mathcal{M}_{-\frac{1}{2},0} ^2$	$ ^2, \mathcal{M}_{-\frac{1}{2}, -\frac{1}{2}} $	$ \mathcal{M}_{+\frac{1}{2},+1} ^2, \mathcal{M}_{+\frac{1}{2},+1} $	$ ^2)g_i(P_b,lpha_\Lambda)h_i$	$\theta_i(\cos heta,\cos heta_1,\cos heta_2)$
$\mathcal{M}_{\lambda_1,\lambda_2}$	helicity an	nplitudes (4)	$ \mathcal{M}_{rac{1}{2},0} ^2$ -	$+ \mathcal{M}_{-rac{1}{2},0} ^2 +$	$- \mathcal{M}_{-rac{1}{2},-1} ^2+$	$ \mathcal{M}_{+rac{1}{2},+1} ^2 = 1$
	i	$f_i(\alpha_b, r_0, r_1)$	$g_i(P_b, \alpha_A)$	$h_i(\cos\theta,\cos\theta)$	$\theta_1, \cos \theta_2)$	
	0	1	1	1		
	1	α_b	P_b	$\cos \theta$		
	2	$2r_1 - \alpha_b$	α_A	$\cos \theta_1$		
	3	$2r_0 - 1$	$P_b \alpha_A$	$\cos\theta\cos\theta_1$		
	4	$\frac{1}{2}(1-3r_0)$	1	$\frac{1}{2}(3\cos^2\theta_2 -$	- 1)	
	5	$\frac{1}{2}(\alpha_b - 3r_1)$	P_b	$\frac{1}{2}(3\cos^2\theta_2 -$	$-1)\cos\theta$	
	6	$-\frac{1}{2}(\alpha_b + r_1)$	α_A	$\frac{1}{2}(3\cos^2\theta_2 -$	$(-1)\cos\theta_1$	
	7	$-\frac{1}{2}(1+r_0)$	$P_b \alpha_A$	$\frac{1}{2}(3\cos^2\theta_2 -$	$(-1)\cos\theta\cos\theta_1$	$lpha_\Lambda$ known
					7	
$lpha_b \equiv \mathcal{M}_{rac{1}{2},0} ^2 - \mathcal{M}_{-rac{1}{2},0} ^2 + \mathcal{M}_{-rac{1}{2},-1} ^2 - \mathcal{M}_{+rac{1}{2},+1} ^2$					amplitude asy	mmetry, predicted 15%*
$r_0 \equiv {\cal M}_{rac{1}{2},0} ^2 + {\cal M}_{-rac{1}{2},0} ^2$						PLB 614 (2005) 165 PLB 649 (2007) 195
$r_1\equiv \mathcal{A} $	$ {\cal M}_{rac{1}{2},0} ^2 -$	$ \mathcal{M}_{-rac{1}{2},0} ^2$				

 P_b — \blacktriangleright tranverse polarisation, expected 0.1-0.2

PLB 649 (2007) 1952

Four parameters to be determined simultaneously from the angular distribution¹⁶

17

$\Lambda^0_b \rightarrow J/\psi \wedge \text{signal selection}$

Analysis based on 1 fb⁻¹ at 7 TeV

Two different classes of events analysed separately: decay inside (LL) or outside (DD) the VELO

Weighted Likelihood implemented to subtract the background and correct for the detector efficiency:

$$w_i = w(m) \times w(\cos \theta, \cos \theta_1, \cos \theta_2)$$

 $w_i = w(m)$ $w(\cos \theta, \cos \theta_1, \cos \theta_2)$ $w(\cos \theta, \cos \theta_1, \cos \theta_2)$ b detector acceptance term: from simulation

PLB 724 (2013) 27-35

18

$\Lambda^0_b \rightarrow J/\psi \Lambda$ angular distributions fit and results

Angular distribution, background subtracted and acceptance corrected

Conclusions

LHCb made several measurements of quarkonia production and polarisation and is contributing significantly to this sector

Cross-sections of J/ψ and Y measured at various energy

 χ_c production ratio using converted/unconverted photons and first evidence of χ_{c0} at hadron collider

 J/ψ and Λ_b polarisation measured at 7 TeV

... many more analyses in progress with 2011+2012 data sets

