

Looking for a Hall probe bench for closed big magnetic structures

J. Campmany,

J. Marcos, V. Massana, L. Ribó, C. Colldelram, F. Becheri, J. V. Gigante, J. Nicolàs, F. Rey, J. Ferrer

www.cells.es

Outline

- Concept presented at IMMW17
- Prototyping
- Results of prototyping
- Discussion
- New proposals

Concept presented at IMMW17

www.cells.es

3/25

We performed FEA analysis

www.cells.es 4/25

Specifications

- Measuring range: 3m.
- Positioning accuracy, Y: ± 50µm.
- Positioning measurement accuracy, Y: ± 10µm
- □ Transversal guidance accuracy, X,Z: ± 25µm
- Pitch, Roll & Yaw guidance errors:
 - □50µrad, 100µrad, 50µrad.
- Additional constrains
 - □ Accessibility.
 - Measurement under vacuum
 - □ Tight cross section: 5mm x 25 mm rectangular

Status of the project in IMMW17:

- Hall probe head was designed. Manufactured was programmed
- Optical systems performance to be tested at ALBA Optical Laboratory
- Mechanical prototype without closed loop motors for correcting roll error was designed to test the 3D model.
 - The objective of that prototype was to check the feasability of the roll measurement system using two pin-holes.
 - It involved the use of mirrors, lasers and CCD sensors.

Prototyping: Hall probe head

Hall head was manufactured on time

Dimensions: 13 x 25 x 2 mm **Weigth:** 0.75 g

F.W. Bell Hall sensors, Model GH-700

www.cells.es 7/25

Prototyping: Mechanical structure

• Mechanical prototype without motors was made to check the feasability of the roll measurement and control using two pin-holes.

Engineering details, at MEDSI contribution from C. Colldelram

www.cells.es 9/25

Load cell

www.cells.es 10/25

www.cells.es 11/25

Hall holder with mirrors and Laser tracker references

> Mirror for angle measurement

Pushing/pulling tape Carbon fiber 0.3 x 24 mm

www.cells.es 12/25

www.cells.es 13/25

Results of prototype: interferometer

- 1 mm ball was attached on the holder
- Interferometer was able to read the position

Measurements were done with laser tracker and interferometry through a cat eye at same time. Correlation of \pm 0,01 mm maximum difference between both different systems has been measured.

Results of prototype: sag

TENSION on the fiber (N)	SAG (mm)
0	0.635
1000	0.125
3000	0.015
6000	-0.005
8000	0.005

www.cells.es 15/25

Results of prototype: planarity

ension fiber alue (N)	Performance	SCAN frequency	Radial deviation peaks (X) mm		Vertical deviation peaks (Z) mm	
0000	Hand moved	50 mm	-0,081	+0,104	-0,018	+0,018
0000	Motorized	3Hz spatial scan	-0,108	+0,171	-0,046	+0,046

Radial deviation peaks (X) mm		Vertical deviation peaks (Z) Mm		
-0,108	+0,171	-0,046	+0,046	Peak measured
-0,025.	+0,025	-0,025	+0,025	specified
0,083	0,146	0,021	0,021	DIFFERENCE

www.cells.es 16/25

Results of prototype: problems found

• Planarity not acceptable

We changed the machining process (mechanization instead of grinding)

• Problems with the pulling/pushing tape

Looking for a better supplier

A new prototype of guiding rails and pulling/pushing tape was done

Spec name	Specification	Max and min peak result
Transversal guidance accuracy (X)	\pm 0,025 mm	-0.018
		+0.028
Transversal guidance accuracy (Z)	\pm 0,025 mm	-0.016
		+0.022

Measurements with autocollimator:

www.cells.es 18/25

- Yaw: 1.2 mrad (spec: 0.05 mrad)
- Pitch: 2.5 mrad (spec: 0.05 mrad)

• Roll: 3.0 mrad (spec: 0.1 mrad)

Problem identified: «natural» twisting of rails because of internal filaments

The short distance between rails (~20 mm) implies that deviations of one rail of only ~2 microns yield 0.1 mrad, out of specifications.

Total change of concept required

New concepts

Option 1: «longbow»

Using current existing bench with a long bow attached. Main drawback: vibrations. But they depend on tension and f_0 can be shifted to high values (>100 Hz).

Option 2: double-bench

M2 and M3 motors defining position

M1 motor controlled by a load cell at higher frequency

Current status: option 1 to be tested

Current status: option 1

Next actions:

- Vibration calculations
- FEA analysis of deformations and weights
- Manufacturing of a short (1.5 m) prototype of longbow
- Assembly of longbow at CELLS existing Hall probe bench
- Testing of the prototype

Thanks for your attention!

www.cells.es 25/25