

C. S. Hwang, NSRRC, Hsinchu, Taiwan

IMMW 18, NSLSII (Long Island), 3 June 2013

- Field measurement system
 - Hall Probe, Rotating coil, search coil
- Magnet alignment method
- Inspection of Storage ring magnets
- Inspection of Booster ring magnets
- Injection Magnets
- Summary

Major Milestones of TPS project

- June 2005 TPS Proposal to Government
- Oct. 2007 Lattice (circ. 518.4m) approved by BOT
- Dec. 2007 TPS final approval by Legislative Yuan
- May 2008 EPA approval; site plan completed
- June 2008 Accelerator Design Book (DRAFT) issued
- Dec. 2008 TPS budget (Civil + Accelerator + BL) lock in
- Dec. 2009 Contract out of the civil construction
- Feb. 2010 Ground Break
- Dec. 2013 Civil construction completed
- Sep. 2014 Installation completed & start to commission
- Sep. 2015 Open to users

- Civil and utility construction will be completed before end of 2013.
- The storage ring installation has been started and will be finished in the third quarter of 2014 and then start the commissioning.
- 150 MeV linac system has been completed and prepare to move into TPS location.
- ♦ 3 sets of superconducting RF system has been finished and the high power test is processing in house.
- 700 kW Cryogenic system is already and prepare to move to TLS location.
- All magnets has been finished 80% by BSL company and will be done at the end of September.
- All the vacuum chambers of the 24 sections will be finished before September.
- ◆ All the power supply will be delivery to NSRRC before this year.
- Control system were developed and will be installed and tested next year.

TPS building

Academic & Activity center

The inside view of TPS

Overview of magnet Lab.

Measurement system	Measurement dimension	Purpose	Note
Hall probe	6 m	ID and EPU	Pulley driven by DC motor
(bench)	5.4 m	Wiggle, Undulator & EPU	Linear motor with air bearing
	1.5 m	Superconducting undulator	In vertical dewar
	2 m	For Lattice magnet	Mechanical precision $20\mu m$
Rotating coil	840 cm	QM and SM-storage ring	
	570 cm	QM and SM-boost ring	
NMR	0.043-13.7T	Hall sensor calibration	
ESR	0.55-3.2 mT		
Search coil	Wire OD=0.12mm, 30turns Wire OD=0.05mm 30turns	Kicker and septum	
Stretch wire	-	Insertion Devices	Measure 1 st & 2 nd field integral
Long loop coil	5-axes	Insertion Devices	Measure 1 st field integral
Helmholtz Coil	3-axis rotation	Magnet block	

Field measurement system for TPS magnets

Two Hall probe system (HPS):

- Main field strength of HPS was calibrated by NMR & ESR (Nuclear magnetic resonance & electron spin resonance system) using dipole magnet.
- This system used for all dipole magnet measurement and the inspection all of the prototype magnets.

Two Rotating coil system (RCS):

- Main field strength of RCS was calibrated by HPS using quadrupole and sextupole magnets.
- Field center of magnet was calibrated by CMM (3-D mechanical measurement system) using quadrupole and sextupole magnets.

Long coil & Search coil system

 This system was used to measure Kicker and Septum. The pulse field and pulse current were recoded to be compared.

HPS and measurement bench

SR-Dipole alignment on the HPS bench

- SR-dipole position check: Hall probe, Tarage_2, Target_3, Target_4 and Targer_5 in alignment.
- Vertical height check: Hall probe, Line_1 (yoke seam) and Line_2 in alignment.

Adapter position check before SR-dipole installation. Hall probe, Tarage_1, Target_2 and Targer_3 in alignment.

- 1. SR-dipole adapter (3.75°): Rotate the SR-dipole magnet to parallel the Hall probe.
- 2. The magnet and adapter are located by the stop-pin and stop-surface.
- The horizontal alignment is checked by the l theodolite.
- . The vertical height of magnet is checked by the eveling.

3D mapping: XY-Z

Rotating coil system (RCS)

SR-QM/SM magnet measured by SR-RCS

Corrector magnet measured by BR-RCS

SR-FFC magnet measured by BR-RCS

Magnet measured by BR-RCS

Rotating coil - vertical offset calibration

Magnet	Q1	Q1	Q9	Q1	Q5	Q6	R4Q8	S1	S2	S 3
SN	P01	P02	P01	P03	P01	P01	P01	P01	P01	P01
CMM V-offset	0.003	0.002	-0.002	-0.006	-0.002	0.003	-0.001	-0.005	0.002	0.004
RCS V-offset	0.106	0.098	0.084	0.085	0.087	0.100	0.085	0.089	0.099	0.106
Different	0.103	0.096	0.086	0.091	0.089	0.097	0.086	0.094	0.097	0.102

Average offset = 94 µm

 $STD = 5 \mu m$

◆ The calibration value of RCS unit is -0.094 mm in the vertical offset.

• The precision of magnet center measurement of this system in vertical axis is 5 μ m.

Rotating coil - horizontal offset

	Q1	Q10	Q1	Q9	Q5	Q6	R4Q8	S1	S2	S3
Note	P01	P01	P02	P01						
H nor. side	0.005 (A)	0.060	0.021	0.060	0.048	0.070	0.066	0.012	0.002	0.030
H opp. side	0.018 (B)	0.038	0.000	0.038	0.014	0.029	0.036	0.002	0.009	0.015
Decision	X1+X2 >> 2U	X1-X2 <<2U	X1-X2 << 2U	X1+X2 >> 2U						
H offset	0.012 (A+B)/2	0.049 (A+B)/2	0.011 (A+B)/2	0.049 (A+B)/2	0.031 (A+B)/2	0.050 (A+B)/2	0.051 (A+B)/2	0.005 (A-B)/2	0.004 (A-B)/2	0.023 (A+B)/2
Bench offset	0.007 (A-B)/2	0.011 (A-B)/2	0.011 (A-B)/2	0.011 (A-B)/2	0.017 (A-B)/2	0.021 (A-B)/2	0.015 (A-B)/2	0.007 (A+B)/2	0.006 (A+B)/2	0.008 (A-B)/2

(a) Nor. side

M = -X1 + U	
$\mathbf{M} = \mathbf{U} + \mathbf{X}2$	
M = (X1 + X2)/2	

(1)

(2) (3)₽

In the small-offset case, equations (4) and (5) are obtained from the normal- and opposite-side measurements. The subtraction of equations (4) and (5) produces (6), which means the magnet-center offset.

ų,

-M = -X1 + U	(4)+
M = U - X2	(5)+
M = (X1 - X2)/2	(6)+

The precision of magnet center measurement of this system in horizontal axis is 10 µm.

Average offset= 11 μ m

STD= 5 µm

The calibration value of RCS unit is 11 µm in the horizontal offset.

Roll Angle Measurement-QM

Opposite side of magnet

Roll Angle measurement by CMM

The roll angle of this magnet is 0.01°

Magnet alignment & position check

Positioning method of Quadrupole & Sextupole

- The positioning precision of this method is within few μ m.
- A PSD with laser is used to double check the system position.

Position shimming method of Quadrupole & Sextupole

Positioning method of SR-DM

- Two reference plates are for defining the horizontal position and four reference plates are for defining vertical position.
- 45 degree clamper was used to push magnet to touch reference plane and fixed by the torque range tool.
- The positioning precision of this method is also within few μ m.

Magnet alignment method

- RCS bench (similar as girder)
- Both side measurement of RCS to indicate the field center of magnet.

1/24 section magnets

TPS Magnets Alignment Inspection

- A laser positioning system for TPS magnet alignment inspection is developed.
 - System is composed of a Laser and 2
 PSD with 2 granite blocks.
 - <u>PSD module</u> is designed to install in quadrupole and sextupole magnet
 - Position jig is designed to symbolize

The optical axis of Laser is adjusted to parallel to girder through reference to position jig

Magnets alignment on the girder

- A PSD module with circular jig was developed to check the magnet center of all magnet in the same girder.
- The measurement result was confirmed that all the magnet center is within 30 μm.

Measurement of Storage ring magnets

SR-magnet specification

(x10 ⁻⁴)	SR-DM	(x10 ⁻⁴)	SR-	QM	(x10 ⁻⁴)	SR-	SM
n	BnL/B0L	n	BnL/B1L	AnL/B1L	n	BnL/B2L	AnL/B2L
0	10000	1	10000	_		$(x10^{-4})$	$(x10^{-4})$
	10000				0	±15	±10
1	±3	2	±2	±2.0	2	10000	
2	+3	3	+2.0	+1.0		10000	-
	-5		-2.0	<u> </u>	3	±2	<u>+</u> 2
3	±2	4	±0.5	±0.3			
1	10	5			4	±3	±1
4	±3	5	±0.8	±0.3	5 - 7	+0.5	+0.5
Normali	zed at 25mm	6 - 8	+0.3	+0.3		±0.5	±0.3
			-0.5	-0.5	8	±0.5	±0.3
• \(\D\)/\(D\)<	<1E-4	9	±0.3	±0.3	0		
• $\Delta b0L/b0$	0L<0.5E-3	10 - 29		+0.3	9	±0.3	±0.3
		10 - 27	±0.3	±0.5	10 - 13	+0.3	+0.3
		Normalized at 25mm			10 10	±0.5	±0.3
					14	±0.3	±0.3
					15 - 29	±0.3	±0.3

Normalized at 25mm

SR-DM-I and SR-DM-II

Field strength

Magent index

- 21 SR dipole magnets were examined at NSRRC. (50 magnets required)
- The dispersion of b0L is better than 0.11%.

SR-DM-I and SR-DM-II

Homogeneity Δb0/b0 and Δb0L/b0L

The $\Delta b0/b0$ and $\Delta b0L/b0L$ are meet spec within good field region (GFR).

SR-short QM

Field strength

- 159 SR short-QM magnets were examined at NSRRC until 2013/05/30. (195 magnets required)
- The dediation of b1L will be compensated by independent power supply.

SR-short QM

SR-short QM

Center offset and roll angle SR-short_QM RCS-Magnetic center V-offset **159 short QM magnets** 0.04 0.02 0.00 **RCS-Magnetic center H-offset** CMM-Mechical center V-offset Mean Std. Dev. CMM-Mechical center H-offset Magnetic center, Vertical-offset 0.002 0.009 (**mm**) 20.02 Center Center Center Magnetic center, Horizontal-offset 0.005 0.012 (mm) Magnetic -0.00630.012 RCS-Magnetic phase error (degree) **Roll angle (degree)** CMM-Mechanical tilt 0.04 **Mechanical center** -0.0020.004 0.02 V-offset (mm) rol **Mechanical center** 0.00 0.006 -0.002H-offset (mm) viagnet -0.02 Mechanical 0.003 0.005 **Roll angle (degree)** -0.04 The mean value of magnetic center offset 20 80 100 120 140 0 40 60 160

32

Magnet index

& magnet roll are within 0.01mm in the vertical (horizontal) direction and 0.012°.

SR-long QM

Field strength

- 28 SR long-QM magnets were examined at NSRRC until 2013/05/30. (50 magnets required)
- The prototype magnet have a large field dispersion.

SR-long QM

SR-long QM

The mean value of magnetic center offset & magnet roll are within 0.01mm and 0.012° in the vertical and horizontal direction.

Magnet index

Multipoles distribution of Q-magnet along Z-axis

BSL-Q1 and Q10-Normal term

Multipoles distribution of Q-magnet along Z-axis

NSRRC

• Exact Skew quadrupole term can be obtained after the angle calibration of Hall probe7.

SR-Sextupole Magnet (SM)

Field strength

- 132 SR-SM magnets were examined at NSRRC until 2013/05/30. (174 magnets required)
- The large dispersion is dominated by prototype magnet.

SR-SM

SR-SM

Measurement of Booster ring magnets

BR-magnet specification

x10 ⁻⁴	BR-DM				x10 ⁻⁴	BR-com	bined QM			
n	BnL/B0L				n	BnL/B1L	AnL/B1L			
	2112,202				1	10000	-			
0	10000				2	-	-			
1	*				3	±4	±2	x10⁻⁴	BR	-SM
L					4	±4	±1	n	BnL/B2	AnL/B2
2	**	10-4			5	±2	±0.5	**	L	L
		X10-4	BK-Pu	re QM	6	±1	<u>±1</u>	0	±45	±30
3	±3	n	BnL/B1L	AnL/B1L	7	±1	±0.5			
4		1	10000	-	8	±5	±0.5	2	10000	_
-	±2	2	+4	+10	9	<u>±2</u>	±0.5	2		
Normaliz	ed at 15mm	3	<u> </u>	±2	10	±4	±0.5	5	±15	±6
● ∆b0/b0-	<5E-4	1			11	±0.5	±0.5	4	0 +	+6
● ∆b0L/b	0L<0.5E-3		<u>±1</u>	±1.5	12-13	±2	±0.3		<u> </u>	±0
*b1L/b0L	<i>i</i> = -2.1043	5	<u>±3</u>	±0.5	14-17	±0.5	±0.3	5-7	±3	±1.5
**b2L/b0	L= -7.5331	6-7	±1	±0.5	18-19	±0.3	±0.3	8		
		8	+0.5	+0.5	20	±0.5	±0.3	U	±10	±1.5
		9	±4	±0.5	Normal ● b2L/l	ized at 15m o1L=1.145	m	9-13	±3	±1.5
		10-12	±0.5	±0.3				14	±6	±1.5
		13	±1.5	±0.5				15 20		
		14-16	±0.5	±0.3				13-20	±3	±0.6
		17	±1.7	±0.5				Norma	lized at 15	mm
		18-20	±0.3	±0.3						
		Norma	alized at 15m	m						42

Homogeneity of BR-BH-001 and BR-BD-002 magnets

- Increase the slope of pole profile to increase the quadrupole component.
- Cancel the end-chamfer of pole.
- Yoke length of BH dipole magnet reduce 4 mm from 758 mm to 754 mm.

Magnet	Items	b1L/b0L		b2L/	/b0L
		Design	Measure	Design	Measure
	Spec.	-2.1043	-	-7.5331	-
DD	Original simulation	-2.0365	-2.049	-7.5524	-8.480
BD (1.6m)	Optimized simulation	-2.1041	-	-7.6129	-
	Original simulation	-1.9758	-	-7.1151	-
BH (0.8m)	Optimized simulation	-2.1050	-	-7.7164	-

Homogeneity of BR-BH-001 and BR-BD-002 magnets

- The $\Delta b0/b0$ of BR-BH-001 and BR-BD-002 is better than 4.5×10^{-4} and -3.0×10^{-4} , respectively
- The ∆b0L/b0L of BR-BH-001 and BR-BD-002 is better than 1.9×10⁻⁴ and -5.3×10⁻⁴, respectively.

- The measurement of ByL/I is confirmed by the calculated value with ignore μ_r and B_r between 100 A to 900 A.
- The ByL/I of BR-BH-001 magnet has clearly increasing is due to the remnant field effect in the low current.
- The ByL/I of BR-BH-001 magnet has slowly decreasing is due to the yoke situation over 900A.

The multipole distributions of measurement are agreement with the simulation result.⁶

Combined function quadrupole magnet

Field strength: Pre-measurement at vendor site

Remnant field improvement of BR-QP magnet

			Original		Ι	mproved
Ma L=0	ngnet .3 (m)	Spec. b1L (T)	Coil turns	Energy @ current	Coil turns	Energy @ current
QP	Q1	4.2985	18	3GeV @ 104A	18	3GeV @ 104A
		0.2149		150MeV @ 5.1A		150MeV @ 5.1A
	Q2	-2.7174	18	3GeV @ 66A	12	3GeV @ 99A
		-0.1359		150MeV @ 3.3A		150MeV @ 5.0A
	QM	-1.2623	18	3GeV @ 30A	6	3GeV @ 90A
		-0.0631		150MeV @ 1.5A		150MeV @ 4.5A

The excitation current of BR-pure quadrupole magnet will be increased after coil no. reduced.
The remnant field effect will be solved by reducing length for the low-current (150MeV) increase.

Pulse magnet measurement

- Half-sine Kickers
 - SR injection kickers x 4
- Half-sine Septum magnet
 - Booster injection septum x 1
 - Booster extraction septum x 1
 - SR injection septum x 1
- PFN Kickers
 - Booster injection kicker x 1
 - Booster extraction kicker x 1

Long Coil and Search coil Measurement system for Storage Ring Kicker Magnet

- Long coil : One turn loop of length 1000 mm and width 1.7 mm
- Search coil : The is 5 mm, from winding thirty turns of enamel wire (thickness 0.5 mm)

B-I Curve

Integral Bfield Roll-Off

Long Coil and Search coil Measurement Systems for SR Injection and BR Extraction Septum

Straight curve probe

- Long coil:
 - Bending curve : Measures the on-axis magnetic field of the septum magnet
 - Straight curve : Measures the leakage magnetic field of the bumped orbit and stored orbit
 - One turn loop of length 1000 mm and width 1.7 mm.
 - Search coil : The is 5 mm, from winding thirty turns of enamel wire (thickness 0.5 mm)

8 9 2

SCOPE Function Generator Integrator

Storage ring Injection Septum Magnet

By Leakage field	
Bumped orbit (G-cm)	90 (0.15%)
Stored orbit (G-cm)	18 (0.03%)
Bx Leakage field	
Bx Leakage field Bumped orbit (G-cm)	15 (0.03%)

By leakage field

Field measurement of Booster Injection and Extraction Kicker Magnet

- Long coil : One turn loop of length 1000 mm and width 1.7 mm
- Search coil : The is 5 mm, from winding thirty turns of enamel wire (thickness 0.5 mm)

Booster Injection Kicker Magnet

Current output

Parameters	Measurement
Pulse shape	Flat top
Fall time (ns)	400
Flat top (us)	1
Flatness (%)	± 1

Integral Bfield Roll-Off

Summary

- •Most of the magnet can be meet the specification. However, much effort to solve the technique problem is necessary.
- •The deviation of b0L of SR-dipole magnets is better than 0.1 %.
- •Deviation of magnetic center & roll angle are within 0.02 mm and 0.02°.
- •A PSD module with circular jig can be used to check all the magnet center on the same girder.
- •The ratio of quadrupole and sextupole of the combine dipole magnet is quite consistence between the TOSCA simulation and the construction results.
- •The deviation of b2L/b1L of QF magnet with current below 5 A is much larger than 82 A, because the remnant field exist in the hysteresis behavior.
- •The coil turns and length of booster magnets should be as small as possible to avoid the current ripple and the remnant field effect in the low energy injection region.

Thanks for your attention