

# Magnets for a new low emitance storage ring at ESRF

J. Chavanne , G. Le Bec, P. N'Gotta, J.F. Bouteille



Outline

### **New magnet lattice**

- Why?
- Magnet requirement

## **Magnet design**

- Specifications
- Constraints

## **Magnetic measurements**

- Integral
- local

## Summary





#### **Reduction of horizontal emittance by a factor of 25**

| Parameter                           | Existing lattice                            | New lattice |
|-------------------------------------|---------------------------------------------|-------------|
| Energy [Gev]                        | 6.03                                        | 6.03        |
| Circumference [m]                   | 844                                         | 844         |
| Beam Current [mA]                   | 200                                         | 200         |
| Horizontal emittance [nm]           | 4                                           | 0.16        |
| Vertical emittance [pm]             | 5                                           | 3           |
| Energy Spread [%]                   | 0.1                                         | 0.1         |
| Beta at ID center , $H \times V[m]$ | 37.6 x 3 (high Beta)<br>0.37 x 3 (low Beta) | 3.35 x 2.79 |
| Beam Size at ID center H x V [µm]   | 400 x 3.9<br>50 x 3.9                       | 23.5 x 3.7  |
| Beam Divergence at ID H x V [µrad]  | 10 x 1.3<br>107 x 1.3                       | 6.9 x 1.3   |



# **Higher brilliance**

#### A light for Science



|             | H emittance | V emittance | Energy spread [%] |
|-------------|-------------|-------------|-------------------|
| Present     | 4 nm        | 5 pm        | 0.1               |
| New lattice | 0.16 nm     | 3 pm        | 0.1               |



# **Emittance reduction**



Constraint:

- same energy
- fit new magnet lattice in existing ring (844 m)
- Keep existing BM sources







# **Compact magnet lattice**

A light for Science

#### ESRF Accelerator upgrade: 1056 magnets to build

| Magnet type | Quantity | Total magnetic length[m] | share |
|-------------|----------|--------------------------|-------|
| Dipole      | 7        | 11.38                    | 65%   |
| Quadrupole  | 16       | 4.17                     | 24%   |
| Sextupole   | 6        | 1.68                     | 10%   |
| Octupole    | 4        | 0.4                      | 2%    |
| All magnets | 33       | 17.6                     | 100%  |

Total length of a cell: 26.376 m Length of ID straight section: 5.8 m

~ 3 m of drift space distributed between magnets ~ 8 m presently

Limited longitudinal space is a specificity of the new ESRF lattice



# Aperture and good field region



#### Initial parameters for preliminary study

| S10 All                          | Horizontal [mm] | Vertical [mm] |
|----------------------------------|-----------------|---------------|
| Vacuum chamber aperture (radius) | 15.1            | 10.1          |
| Good field region (radius)       | 8.3             | 5.5           |

| S10 Centre (high gradient)       | Horizontal [mm] | Vertical [mm] |
|----------------------------------|-----------------|---------------|
| Vacuum chamber aperture (radius) | 8.3             | 5.5           |
| Good Field Region (radius)       | 7               | 5             |



- Project not yet funded (decision early 2015)
- Go ahead with prototype development and magnetic measurements
- 2013-2015
  - Magnetic design
  - Mechanical design
  - First prototypes
  - Improvement/development of magnetic measurement systems
    - stretched wire/vibrating wire benches
    - Local field mapping
    - Other ...
- ..... 2019 all magnet installed



- Achievable Magnet performance/ field quality in defined aperture
- Impact on vacuum chamber technology
- Impedance issue,...., etc
- Energy efficiency
- 3D magnetic modeling using RADIA

Native field integral calculation Electron beam tracking in magnet Efficient parameterization for various optimization

Pole shape

. . . .

- Geometrical errors budget
- Electrical power







# Geometrical design constraints A Light for Science



- Small bore radius = tight mechanical tolerances
- Mechanical length (limited space)  $\rightarrow$  short coils
- Photon beam path specific to SR sources (open magnets)
- ... etc

#### ESRF has a long experience with Permanent magnet systems (Insertion Devices)





# **Pole shape optimization**

60 mm





# Magnet modules arrangement



Longitudinal position [m]

Whole magnet oriented along mean beam path Modules translated horizontally by few millimeters Residual offsets vs local magnetic axis ±2.5 mm

All magnets with longitudinal gradient= 640 modules with similar shape and different amount of magnet blocks

~ 3.2 tons ( 380 dm<sup>3</sup>) of  $Sm_2Co_{17}$  permanent magnets needed for all 128 magnets



#### Purpose : restore exiting BM source points for the new lattice



Magnetic design under study

Possibly based on Permanent Magnets as other dipoles

Field tunability .....



### **No laminations**

- Storage ring  $\rightarrow$  Constant field
- Stringent mechanical tolerances
- Demanding alignment

## **Field quality**

- Asymmetric GFR (∆G/G<10<sup>-3</sup>)
- Optimization of the pole profile

# **Optimization criteria**

- Field quality in GFR
- Power consumption
- Compactness





#### **Design parameters**

- Spec: 100 T/m x 335 mm
- Bore radius: 11 mm



# **Magnet length**

- Mechanical length: 360 mm (iron +coils)
- 1 kW



#### Magnet close to saturation



Gradient vs. current

Variation of multipole content (reference: 130 A)



# Sextupole magnet

#### Bore radius 19 mm



Mechanical length < 300 mm

Sextupole homogeneity < 1% in GFR

Integrated sextupole : 420 T/m nominal

2D sextupole: 1500 T/m<sup>2</sup>





## Octupoles

A light for Science



x [mm]



## Integral measurements

#### Stretched wire:

- Integrated multipoles analysis
- magnetic center
- Other variants (vibrating wire)

#### Adequate for

- Quadrupoles
- Sextupoles
- Octupoles
- Dipole modules



ESRF stretched wire bench

Curved magnets will need dedicated curved coils



#### **Rely on existing experience with Insertion Device Hall Mapping**

#### Several units in operation

- Modern mutli-axis control
- High positioning accuracy
- Appropriate for open magnets
- Search coil vs hall sensors

#### Used for

- Curved magnets (dipole)
- Combined dipole/quadrupole



#### To be probably adapted for dipoles & combined function magnets



# Magnet alignment

#### A light for Science

#### Difficult and essential part

Usual alignment based on fiducialisation not sufficient

In situ alignment on girder with stretched wire/ vibrating wire seems better option

RMS alignment error of 20  $\mu$ m looks feasible (wire length ~ 3m)



(see Stretched wire measurements of magnet girders, G. Le Bec on Wednesday)

Appropriate for straight magnet assembly (eg. quadrupoles sextupoles, etc)

Magnet girder with combined dipole/quadrupole need other approach





#### Very challenging magnets in focus @ ESRF

- Field performance close to magnetic saturation for quadrupoles, sextupoles
- High stability permanent magnet materials must enter in the process
- Preliminary magnetic design to be completed (combined function magnets)

- Magnetic measurements
  - Stretched/vibrating wire is a good option
  - Local field mapping to be refined

More to come at next IMMWs .....