

Update on Metrolab's new developments

Philip Keller, Metrolab Technology SA IMMW18 • June 3, 2013 • Brookhaven National Laboratory

Developments since IMMW17

- 3-axis magnetometer family:
 - New probes
- Integrator:
 - Major upgrade to Fast Digital Integrator
- NMR magnetometer:
 - New generation nearing completion (??!)

3-axis magnetometers

- Compact
- USB Plug & Play
- Optional handheld
- Spectral analysis
- Custom software

3-axis magnetometers (today)

New:

- THM1176-HF: extended calibration range
- THM1176-MF: new integrated 3-axis Hall
- TFM1186: new low-power fluxgate

THM1176-MF

- Sensima MV 403A
- Packaging like Senis (= like Group3: 16.5 x 5.0 x 2.3 mm)
- Ranges: 0.1, 0.3, 1, 3T
- Resolution: 0.1 mT
- Accuracy: ±1%

THM1176-MF vs. THM1176-HF

- Lower noise density...
- especially for vertical Hall sensors < 200 Hz
- => Improved resolution – now limited by ADC

Copyright © 2011 Sensima AG

Temperature correction

- Self-heating / cooling due to range changes
- More important & much faster than external temperature changes!
- Also: temperature dependence is nonlinear
- => Rethink firmware temperature correction

TFM1186

- Bartington Mag649: 3-axis, common origin, low power, 1 kHz bandwidth
- Sensor size: 30 x 32 x 70 mm
- Range: 100 µT
- Resolution: 4 nT
- => Portable instrument to measure "zero-field" disturbances

TFM1186: special considerations

No temperature sensor:

- Electronics calibrated by Metrolab, sensor by Bartington
- => Accuracy specs:
 - Offset: ±100 nT 1 nT/°C
 - Scale: ±0.5%, 100 ppm/°C
- => Sensor connector

FDI2056: Fast Digital Integrator Status at IMMW17

History:

- 2008: License from CERN
- 2009-2010: Shipments
- 2010-2012: Major upgrade
- 2012/2013: Shipments resume
- Limitations of original design:
 - External trigger only
 - Time lag when daisy-chained
 - 2ⁿ-1 partial integrals only
 - 50 ns trigger time resolution
 - Trigger rate < ~100 kPI/s
 - No voltage acquisition option
 - Not field-upgradable
- Firmware bugs:
 - Odd saw-tooth pattern
 - Sampling rate affects result
 - Fast trigger causes calculation error
 - No buffer overflow error reporting

- Metrolab upgrade:
 - Position encoder input per channel
 - On-board memory (1 MPI)
 - "Trigger factory"
 - Single clock / crate
 - Channel synchronization < 1 ns
 - Trigger rate to 500 kPI/s
 - Beatings due to multiple clocks
 - Nonlinearity due to protection diode
 - Field-upgradability
- Limitations that remain:
 - Input is not floating
 - Not fully EMC compliant
 - Non-negligible input impedance
 - R(coil) ignored in auto-calibration
 - Maximum gain is 100x
 - Slow data transfer (1-1.2 MB/s)

FDI2056: Interface

Proposed at IMMW17:

Solution retained:

- Industrial Windows computer in PXI crate
- Preinstalled app => "out of box" operation
- Or => Ethernet interface:
 - VXI-11 / SCPI standards
 - LabVIEW driver on National Instruments' web site
 - All source code
- Or => Serial interface:
 - PDI5025 compatibility
- Lower crate system cost!

FDI2056: Key specifications

- Gain: 0.1 100
- Range: ±10 V ÷ Gain
- Timer resolution: 12.5 ns
- Noise floor (1kHz BW): -103 dB (gain 0.1-10), < -97 dB (other)
- Harmonic distortion: ~ -105 dBc
- Max offset variation:
 < Noise floor ÷ 5
- Trigger sources: External, Timer, Encoder, Software, Multi-channel
- Rate: 0.02 Hz 500 kHz
- Channels: 1-3

FDI2056: at Danfysik

- Large-aperture rotating-coil measurement system
- End customer: Raja Ramanna Centre for Advanced Technology (RRCAT) in Indore, India
- 5 coils, 2 m long x 64-276 mm diameter
- Glued into 2.5 m long coil tubes with cross structure
- Includes automated magnet alignment system, DCCTs for current measurement, 6-axis measurement arm
- FDI2056 in PDI5025 emulation mode, for compatibility with existing software

PT2026: NMR Precision Teslameter

History:

- 2003 Project launch
- 2006 Failed market introduction
- 2009 Last update at IMMW16
- 2013 Project completion???

Technical issues:

- Beat frequencies due to DDS: → False NMR signals
- Frequency modulation:
 - \rightarrow Sloping base line => signal extraction difficult
 - \rightarrow Existing probes not designed for it
- Auto-tuning of CW probes:
 - \rightarrow Digital approach: noise sensitivity => highres DAC, computationally intensive
 - \rightarrow Analog approach: destabilized by beat frequencies
- => New approach

PT2026 "version 2.1": scope

- Pulsed-wave probes
- 1 channel + external mux
- Ethernet & USB: IEEE 488.2, SCPI protocols
- LabVIEW application & API
- Later:
 - New continuous-wave probes (low field)
 - Adapter for PT2025 probes
 - Front panel
 - Multi-probe systems ("Magnetic Field Camera")
 - Flowing-liquid for very widerange single probe

PT2026 v2.1: Benefits over PT2025

- High frequency => high fields
- Pulsed-wave => accuracy
- Flexible RF generator => flexible field ranges
- Built-in 3-axis Hall probe => fast search
- Signal processing => inhomogeneous-field performance
- Flexible parameters => trade off accuracy vs. measurement rate
- Remote sample coil => small gaps, high radiation
- No field modulation => multiple probes in same field
- Trigger in/out => measurement system integration
- Reference clock input => no calibration
- Standard interfaces, LabVIEW software => "install & plug & play" with computer

PT2026 v2.1: Limitations

- Current probe design:
 - ~8 − 500 MHz => 0.2 – 12 T with H => 1.2 – 76 T with ²H
- High frequency derivative in (near) future:
 - – 1.1 GHz => - 26 T with H => - 168 T with ²H
- Low frequency derivative?
 - Alternative is new CW probe:

 - > Prototype available> Requires CW upgrade
 - => Down to ~ 40 mT with H

PT2026: inhomogeneous fields

- Compare in field of 0.99T (42 MHz), plus gradient coil:
 - PT2025 & 1062-4
 - PT2026 "SF" ("Single-Frequency" = same frequency for transmit pulse & IF mixing – version 2.1)
 - PT2026 "DF" ("Dual-Frequency" = separate frequencies for transmit pulse & IF mixing – future upgrade)

PT2026: inhomogeneous fields

Gradient coil: 0.6 A (est. 810 ppm/cm)

PT2026 SF

PT2026 DF

	PT2025	PT2026 SF	PT2026 DF
Max gradient: search & measure	0.4 A	0.6 A	1 A
	(540 ppm/cm)	(810 ppm/cm)	(1350 ppm/cm)
Max gradient:	0.5 A	0.75 A	1.2 A
measure	(675 ppm/cm)	(1012 ppm/cm)	(1620 ppm/cm)

Questions?

