Measurement challenges for the CLIC study

J. Garcia-Perez¹, M. Buzio¹, G. Deferne¹, P. Galbraith¹, M. Modena¹, C. Petrone²

¹ CERN TE-MSC

² University of Sannio, IT

05.06.2013 BNL

1

Overview

- ➔ Compact Linear Collider Introduction
 - Main Beam
 - Drive beam
- ➔ Magnets function and types
- ➔ Alignment and stabilization
- → Techniques used to measure
- → Results of measurements
 - Drive Beam Quadrupole Daresbury
 - Drive Beam Quadrupole Danfysik
 - Machine Detector Interface QD0
- ➔ Conclusions

Introduction Compact Linear Collider Study

- → New physics to discover (Dark Matter, SUSY?)
- ➔ Higgs production and study
- → LEP 209 GeV closed in 2000
- International Collaboration with 44 partners in 22 countries like experiments
- Linear instead of circular (Synchrotron Radiation)
- Resistive magnets (ILC Super Conducting RF)
- ➔ Flexible Energy 0.5-3 TeV (CM Energy), 100 MV/m
- ➔ Waiting LHC Results to decide
- Novel technology, Power Extraction and Transfer Structures (PETS)12 GHz to accelerate Main Beam
- → Very low rate of failure, < 3x10⁻⁷ per pulse per metre, is a must for the accelerating structures
- → Very tight alignment constraints ~µm and active stabilization for Main Beam $\sigma_x = 1.5$ nm & $\sigma_y = 5$ nm

Modularity (~ 2 m long)

Description [units]	500 GeV	3 TeV
Total (peak 1%) luminosity	$2.3(1.4) \times 10^{34}$	$5.9(2.0) \times 10^{34}$
Total site length [km]	13.0	48.4
Loaded accel. gradient [MV/m]	80	100
Main Linac RF frequency [GHz]	12	
Beam power/beam [MW]	4.9	14
Bunch charge $[10^9 \text{ e}^+/\text{e}^-]$	6.8	3.72
Bunch separation [ns]	0.5	
Bunch length [μ m]	72	44
Beam pulse duration [ns]	177	156
Repetition rate [Hz]	50	
Hor./vert. norm. emitt. $[10^{-6}/10^{-9}m]$	2.4/25	0.66/20
Hor./vert. IP beam size [nm]	202/2.3	40/1

J. Garcia-Perez, M. Buzio, G. Deferne, P. Galbraith, M. Modena, C. Petrone IMMW Workshop, Brookhaven, June 2013

MAGNETIC MEASUREMENT

J. Garcia-Perez, M. Buzio, G. Deferne, P. Galbraith, M. Modena, C. Petrone IMMW Workshop, Brookhaven, June 2013

MAGNETIC MEASUREMENT SECTION

CLIC module with two Beam elements

J. Garcia-Perez, M. Buzio, G. Deferne, P. Galbraith, M. Modena, C. Petrone IMMW Workshop, Brookhaven, June 2013

MAGNETIC MEASUREMENT

Types of CLIC modules and number of magnets

→ 4020 Main Beam Quadrupoles with Gradient 200 T/m and 10 mm aperture

Quadrupole type	Magnetic length [mm]	Quantity
Type-1	350	308
Type-2	850	1276
Type-3	1350	964
Type-4	1850	1472

- ➔ 41400 Drive Beam Quadrupoles with Gradient in the range 81.2 - 8.12 T/m and 26 mm aperture with two options: resistive or tuneable PMQ
- ➔ 52 Superconducting wigglers
- ➔ 4020 Beam steering correctors
- ➔ Final Doublet Quadrupoles in the Machine Detector Interface QF1 and QD0 (575 T/m and 8 mm aperture)

SECTION

CLIC Pre-Alignment and stabilization

- → Mechanical pre-alignment ~±0.1 mm w.r.t. Metrological Reference Network (MRN)
- **→** For Main Beam and Beam Delivery System few μm (200 m window)
- Support Pre-alignment Network (SPN) few μm over 10 m
- → Several components pre-aligned on supports:
 - Girders for RF components of MB and DB
 - Interface plates for MB Quads
- → Cam movers for 5 DOF re-adjustment of MBQ (nm)

and high-resolution linear actuators for 3 DOF DBQ and MB girders

Techniques used for the magnetic measurements

- Field Quality, roll angle and Gradient MM for DBQ magnets (26 mm aperture) **→**
 - Rotating Coil : LINAC4 bench for DBQ magnets
- Field Quality, Roll angle and gradient MM for MBQ magnets (10 mm aperture) and D0 \rightarrow magnets (8 mm aperture)
 - Single Stretched Wire & Oscillating wire (New method)
 - New Printed Circuit Board rotating coil shaft (R&D)

J. Garcia-Perez, M. Buzio, G. Deferne, P. Galbraith, M. Modena, C. Petrone IMMW Workshop, Brookhaven, June 2013

MAGNETIC MEASUREM SECTION

Main Beam Quadrupole prototype measurements

→ ⁻	Гуре	1	MB	Q
	11			_

- 334 mm length
- 70 T Integrated
 Gradient
- 126 A Nominal Current
- 10 mm Aperture
- Dipole Steering Correctors

Parameter [unit]	Value
Yoke length [mm]	1844
Magnet length [mm]	1901.8
Yoke weight [kg]	$80 \times 4 = 320$
Conductor weight [kg]	$12.5 \times 4 = 50$
Total magnet weight [kg]	370
Cooling circuits per magnet	4
Height/width [mm]	5.6
Hole diameter [mm]	3.6
x = y [mm]	1
r [mm]	1
Turns per pole	17
Conductor length per pole [m]	68
Current [A]	126
Current density [A/mm ²]	6.01
Resistance [mΩ]	241.3
Inductance [mH]	42.8
Power [W]	3831
Voltage [V]	30.4

Drive Beam Quadrupole Daresbury prototype (Permanent Magnet) measurement

J. Garcia-Perez, M. Buzio, G. Deferne, P. Galbraith, M. Modena, C. Petrone IMMW Workshop, Brookhaven, June 2013

SECTION

Drive Beam Quadrupole Danfysik prototype (Resistive) measurements

J. Garcia-Perez, M. Buzio, G. Deferne, P. Galbraith, M. Modena, C. Petrone IMMW Workshop, Brookhaven, June 2013

CÉRN

MAGNETIC MEASUREMENT

SECTION

Machine Detector Interface magnetic layout with L* = 3.5 m

- ➔ Machine Detector magnets
- SD0 sextupole corrector
- Antisolenoid to protect QD0 from powerful detector solenoid
- ➔ QD0 Final focus quadrupole
 - Very compact high gradient (575 T/m)
 - Inside the experiments
 - Very tight alignment stability (active stabilisation)
 - Very long 2.73 m
 - Small bore 8.25 mm
 - Good Field Region radius 1 mm
 - Hybrid design
 - Two different materials Nd₂Fe₁₄B and

Sm₂Co₁₇ for Permanent magnets

J. Garcia-Perez, M. Buzio, G. Deferne, P. Galbraith, M. Modena, C. Petrone IMMW Workshop, Brookhaven, June 2013 MAGNETIC MEASUREMENT SECTION

QD0 magnetic measurements results

- Maximum gradient measured with Sm2Co17 in good agreement with FEA computation. Second material not so good. Maybe due to incorrect magnetization
- → Stability of the magnetic axis was found inside ±2.5 µm along the powering curve
- Magnet cycling precise and repeatable, minimum hysteresis
- ➔ Field harmonics @ 1 mm Rref in the required tolerances (10 units) measured with oscillating wire method
- PM blocks to be measured with 3D Helmholtz coils system
- Longer prototype to be manufactured

J. Garcia-Perez, M. Buzio, G. Deferne, P. Galbraith, M. Modena, C. Petrone IMMW Workshop, Brookhaven, June 2013

Summary of magnetic measurements results

- ➔ Main Beam Quadrupole
 - Axis to be checked
 - Gradient OK, agreement with simulations
 - Field Quality not OK, bad machining of poles (tight tolerances!)
- ➔ Drive Beam Quadrupole Daresbury
 - Axis not OK
 - Gradient OK
 - Field Quality not OK
- ➔ Drive Beam Quadrupole Danfysik
 - Axis not OK
 - Gradient OK
 - Field Quality not OK
- → QD0
 - Axis OK, inside 2.5 μ m for the powering cycle
 - Gradient OK for Sm but not OK for Nd , -6% (PM blocks issue)
 - Field Quality quite good

- → CLIC is a challenging project
- → Dimensions and number of magnets are impressive
- → Alignment and stabilization are critical
- ➔ In the magnetic measurements the oscillating wire method finds a very good reason to perform
- → Results help to improve short prototypes
- → Many opportunities for Permanent magnet solutions

→ Waiting LHC results for decisions. TDR starting

Daresbury Permanent Magnet Quadrupole for Drive Beam

DBQ Tunable Permanent Magnet

