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Mu2e Magnetic Measurements
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Introduction

● Physics & Detector
– mu-e conversion

– Mu2e and the LHC

– Mu2e magnets

● Magnetic Measurements (concepts & ideas)
– Measurement requirements and scope

– In-Situ Sensors

– Field Mapping

– Electron Source Test

– Safety
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What is mu-e conversion?
● Muon converts to electron in the field of a 

nucleus

● Standard Model Background of 10-54

● Charged Lepton Flavor Violation (CLFV) signal 
measurable with single-event-sensitivity (SES) 
of 2.5 x 10-17

● Keep expected background <1 event
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Experimental Signal

● A single mono-energetic electron

● For Aluminum stopping target, E
e
 = 105 MeV

● Electron energy depends on Z of stopping target
– Switch target Z to further discriminate models of underlying physics

● Nucleus coherently recoils off electron, no breakup
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Mu2e is a Discovery Experiment

● Access SUSY through loops
● Compositeness
● Leptoquarks
● Heavy Neutrinos
● Second Higgs Doublet
● Heavy Z'
● ...

SUSY
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Mu2e and the LHC

New Physics at
the LHC?

Mu2e Signal?

Yes No

Yes No

Mu2e could still see a
signal from physics up
to 104 TeV

Null result imposes
severe constraintsModels have to explain

the signal, and the arXiv
explodes ...
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Mu2e at Fermilab (1)
● Proton batches from Booster 

to Recycler Ring for re-
bunching

● Transfer to Delivery Ring

● Resonant extraction system 
to deliver high intensity and 
pulsed proton beam to Mu2e

– 8GeV protons

– 200ns pulse width

– 1695ns pulse spacing

– 8kW beam power on target

– 3x107 protons/pulse
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Mu2e at Fermilab (2)
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The Mu2e Detector

CDR: arXiv:1211.7019

● Target protons at 8 GeV inside superconducting solenoid 
(Production Solenoid)

● Capture muons and guide through S-shaped region (Transport 
Solenoid) to Al stopping target (Detector Solenoid)

● B-field gradient: B
z
=4.6T (Prod. Sol.) to 1 T (Det. Sol.)

B
z
=4.6T 2.5T 2T 1T
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Mu2e Production Solenoid (PS)
● 1.6m aperture, 4m 

long

● Operating current 
~9kA

● 8GeV protons hit 
target

● Strong axial gradient 
solenoid field

– 4.6T to 2.5T

● 3 solenoid coils with 3, 
2, and 2 layers of Al-
stabilized NbTi 
superconducting cable

● Magnetic field deflects 
traps charged pions 
and moves them 
towards TS as they 
decay to muons
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Mu2e Transport Solenoid (TS)

● Set of superconducting solenoids 
and toroids to form magnetic 
channel

● Transmits low energy negatively 
charged muons from PS to DS

● Absorbers and collimators 
eliminate high energy neg. 
charged particles, pos. charged 
particles, neutrals

● Selection of neg. muons using 
the fact that a charged particle 
beam traversing a toroid will drift 
perpendicular to toroid axis

● Maintaining a negative gradient 
for magnetic field is crucial to 
minimize late arriving particles
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Mu2e Detector Solenoid (DS)

● 1.8m aperture, 10m long, operating current ~6kA

● Contains muon stopping target (Al) and detectors to analyze 
conversion electrons

● Stopping target resides in graded field (2T to 1T) to deflect electrons 
towards detectors

● Detectors reside in uniform field region: tracker & calorimeter
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Field Measurement Requirements

● Production Solenoid:

– Maintain strong axial gradient
● Transport Solenoid

– Straight sections: Negative monotonic axial gradient to 
prevent trapped particles

– Toroidal sections: Matched to central collimator geometry for 
muon momentum selection

● Detector Solenoid:

– Field uniformity near tracker <1% dB/B, measured to ~1 part 
in 104 for conversion electron energy determination

– Field uniformity near calorimeter reduced to 5% dB/B
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Field Mapping Scope
● Design and build a precisely positioned array of Hall probes for 

measuring magnetic field profile of each TS coil module during cold 
testing

● Design and build a system of fiber optic displacement sensors to 
measure TS coil end positions and angles wrt to the cryostat at each 
TS interface (TS1, TS3u, TS3d, TS5)

● Design and build field mappers to precisely position Hall & NMR 
probes and measure PS, TS1, TS5, DS fields in final magnetic 
configuration; also to measure PS field after HRS installation

● Design and build precisely positioned arrays of Hall (NMR) probes, for 
installation in the muon beamline regions at TS1, TS3, TS5, (DS3) to 
monitor field profiles during operation

● Design and build a low energy electron source, with positioning & 
detection systems, to test electron transport through TS channel
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In-Situ Sensors: Displacement
● Displacement sensors

– Monitor the TS coil positions and angles
● especially during commissioning
● Coils will move: warm to cold, unpowered to 

powered
● Axial and radial motions, up to 25 mm
● Supports will allow some coil position adjustment

– Preferred solution: Fiber optic (Philtec)
● Used in MRI (work in vac, cryo, high B)
● Length of fibers? Local amplifier/digitizers? 

(TBD)
● Radiation issues: feed-through, fiber changes 

(TBD)
● Alternative: capacitive displacement sensors?
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In-Situ Sensors: Hall-Probes
● Hall Probe Arrays (and Temp. sensors)

– Measure fi eld axial, radial components at interfaces

● In “fi nal magnetic confi guration”
– Negative gradient dB/ds through straight collimator 

regions
– Radial gradient dBr/ds and radial fi eld Br through these
– TS1, TS5 will also be mapped in baseline plan
– TS3 can only be measured this way in fi nal 

confi guration
● Monitor stability (polarity) of fi elds during (initial) operation

– Radiation will affect probe sensitivity in unknown ways 
over time

– Conceptual solution:

● Measure fi eld at discrete points using linear arrays
● How many are needed, in which locations? (TBD)

– 4-wire devices, wired into current chains to reduce # 
feedthroughs

● What is the best location for these?
– Radiation shielding; well-known positions
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In-Situ Sensors: NMR
● NMR Probes

– Measure field stability in DS uniform tracker region

– Absolute fi eld at nominal and reduced current (calib)

● Conceptual solution:

– Two probe ranges needed (Inom, Ical)

– Mount to ends of tracker frame

● Sensitive to change of fi eld due to tracker position changes
– Mount to inner wall of DS bore

● Distinguish actual fi eld changes due to current or coil changes
● If neutron absorber, would need small cutout regions

– Co-axial IFB Feedthroughs

● �  8, each (5 or) 8-pin lemo + BNC
● RemoteElectronics

– How will power, signal, control cables be routed?

● How long do they need to be?
– Do we need some equipment in the Mu2e hall?

● Amplifi ers, digitizers close to the magnets
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Field Mappers (1)
● DS (1 to 2T, DZ~11m )

– Measure fi eld in DS/TS5 interface region, to r=0.15m

– Measure fi eld in DS gradient region, to r=0.7m

– Measure fi eld in DS uniform tracker region, to r=0.7m

● PS (2 to 5T, DZ~5m)

– Measure fi eld in PS/TS1 interface region, to r=0.15m

– Measure fi eld in PS volume prior to HRS installation, to r=0.7m

● Common Conceptual solution:

– Volume map on a cylindrical grid of points

● Detailed comparison against Opera3D magnetic model

● Analytical fi t (to function satisfying Laplace equation)

– CMS-style transporter to position probes in {r,z,q}

● 3D Hall Probes, NMR ref probe, at fi xed R,q along “propellers”

● Propellers rotate in azimuthal angle steps at each z position

● Cantilevered extension to move probes into collimator region

– Axial motion along precision rails

● Drive mechanism (e.g., pneumatic or non-mag. cable?) TBD

● Precision linear encoder

● continuous survey of targets during map
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Field Mappers (2)

CMS System: R=1.72m
Mu2e System: R=0.70m

● PS/DS Field Mapping System:

– Transport mechanism on guide rails pneumatic or non-magnetic 
cable driven

– Probes on propeller arms (large volume map) low mass 
extension (collimator map)

– Same system has to be used in two places

● Can not map PS and DS simultaneously

● May need to move/setup multiple times

● Re-survey for each new setup after adjustments
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Field Mappers (3)
● Alternative PS Conceptual solution

– Stiff beam with rotating shaft, cantilevered propeller(s)

– External base with rails, transport and drive system

– Method used for CDF, BABAR (“rotoTrack”)

– Electronics could, in principle, still be shared with DS mapper

● Dedicated system stays (roughly) in place for all measurement phases (moves for HRS installation)

● Large and small “propellers” with Hall probe arrays for mapping outer radii without HRS; inner radii 
with HRS

● Long enough to extend probes through TS1 collimator (or add extension to front end of shaft)
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Electron Source Test (1)
● Motivation

– TS curved sections cannot be mapped

– Concern about potential backgrounds, and magnetic drifts in TS curved sections (e.g, systematic coil angles)

● Will “good” particles get through the collimators

● Will “bad” particles get stopped by the collimators

– Test low energy electron transport through channel

● General Concept

– After “rough” fi eld mapping is completed (PS/TS1,TS5/DS are OK)

– Install low Energy electron source in region of production target

– Install electron detector at DS stopping target

● Other detectors already tile upstream faces of TS3u, TS5 collimators

– Reduce the transport channel pressure (gas mass)

– Operate Solenoids in fi nal magnetic confi guration

● (do we need to do this in both polarities?)

– As a function of electron source position, detect electrons at key locations downstream

– Since electrons will all show up where they are supposed to:

● Remove e-source and DS e-detector

● No need to remove those on collimator front ends

– Can now install targets, pbar window, shielding, detector, do exp!
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Electron Source Test (2)

Opera simulation (M. Lopez)

● Electron source options:

– electron gun (~10 keV) or beta source (1-2 MeV)

– Source transverse positioning method

● Needed to explore position dependence

● Single beta source mounted on x,y positioning 
stage

– 2D ceramic/piezo stage will work, but 
expensive (~$25k)

– Advantage of fine position control
● “Several” Individually powered electron guns 

(cheap) » (or, could one use shutters or mask to 
select?)

● Need low level vacuum for low energy electrons to pass 
through the channel

● Electron detector options

– Want some level of segmentation (TBD; $/# channels)

– Must work in ~2 T magnetic field

– Low E electrons won’t penetrate far

● Light detection, segmented Phosphor screen/scint

● Charge collection electrode array?

● Re-use some old silicon detectors?
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Safety Issues

● High Magnetic Field Hazard:

– No access to personnel during powered operation: fully remote control 
and data acquisition.

– Possibility of laser survey operation with field on (at least in DS)

● Cryogenic

– Cryogenic magnet operation probable when mapper is installed, 
surveyed, removed: ODH considerations will apply

● Radiation:

– We don't anticipate to measure after irradiation

– However, what if there is a potential problem and the experiment 
wants to investigate the field? Should at least keep it in mind.
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Summary

● Mu2e magnetic measurements will be on the critical path

● Interesting challenges ahead

● The clock is ticking ...
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Backgrounds

● Decay-in-orbit (DOI)

● Radiative Muon Capture

● Processes that are delayed because of particles that spiral slowly down 
the muon beam line

● Prompt processes where the detected electron is nearly coincident in time 
with the arrival of a beam particle at the muon stopping target (e.g. 
radiative pion capture, RPC)

● Electrons or muons that are initiated by cosmic rays

● Reconstruction errors
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