

MedAustron quadrupole Magnets Harmonic results, comparison between SIGMAPHI and CERN measurements

Marie-Julie Leray Pereira,

Samuel Tailhardat, Anthony Le Baquer (SIGMAPHI)

Anthony Beaumont, Giancarlo Golluccio (MedAustron / CERN)

Content

- SIGMAPHI news
- Introduction to MedAustron project
- Measurement bench configuration and rotating coil manufacturing
- Measurement qualification
- Measurement results harmonics and axis shift
- Comparison with CERN (MedAustron) measurements
- Conclusion

SIGMAPHI NEWS

Sigmaphi has been specialized for 30 years in the design, manufacture and measurement of magnetic systems for particle accelerators

- 2012 sales 11,4 M€, 95% exported to major labs around the world and to hadrontherapy industrial companies
- 70 people

Sigmaphi took over in March 2013 the Power Electronics group of Bruker

- Ultrastabilized power supplies up to MW
- RF Solid State Power Amplifier
- 43 people, highly skilled, 2012 sales 5 M€

- Magnets facility in Vannes (France)
- Electronics facility in Wissembourg (France)
- 100% Sigmaphi owned facility in Beijing; same quality and management as in our French facilities
- Branch in Japan

SIGMAPHI NEWS

Accelerator technologies

- Injection/extraction pulsed systems
- Complete particle beamline design, installation and alignment
- Accelerator design

The tracker in location 3 is on a 2.7 m pedestal, thus making sighting level about 2.9 m above ground level

MedAustron quadrupole magnets – Harmonics results, comparison between Sigmaphi and CERN measurements IMMW18, June 4, 2013

Introduction / MedAustron project

Centre for ion therapy and research in Austria Quadrupole Magnets for the Synchrotron, MEBT and HEBT lines

MAGNETS AND BEAM TRANSPORT

MedAustron quadrupole magnets – Harmonics results, comparison between Sigmaphi and CERN measurements IMMW18, June 4, 2013

Measurement main issues

- Upgrade of our rotating coil bench (a new girder)
- 2 new rotating coils
 - one FR4 rotating coil, active length 1150mm, Rmeas=67mm (Rmax=70mm)
 - one carbon fiber rotating coil, active length 1150mm, Rmeas=30mm (Rmax=32mm)

- Minimum current value 1.4A (MQZB/MQZE) and 18A (MQZC)
- Measurement Qualification with a cross-check measurement of 4 prototypes at <u>CERN</u>

HARMONIC BENCH design (MQZ-C version)

MedAustron quadrupole magnets – Harmonics results, comparison between Sigmaphi and CERN measurements IMMW18, June 4, 2013

IMMW18

MQZ-E version

HARMONIC BENCH design (MQZ-C version)

MedAustron quadrupole magnets – Harmonics results, comparison between Sigmaphi and CERN measurements IMMW18, June 4, 2013

HARMONIC BENCH - description of the measurement chain (MQZ-C version)

Power converter

Hazemeyer 0/2285A

DC current transducer

• DCCT Danfysik 0/2000A linearity < 1.5ppm, offset < 15ppm Noise < 0.3ppm

Rotating coil system

- Quadrupole mole diameter 147mm, with maximum 70mm reference radius (Rref = 67mm), and an effective coil length of 1150mm
- rotary encoder 720000 points
- bubble level 0.02mm/m

Metrolab PDI5025

MedAustron quadrupole magnets – Harmonics results, comparison between Sigmaphi and CERN measurements IMMW18, June 4, 2013

HARMONIC BENCH alignment results

MedAustron quadrupole magnets – Harmonics results, comparison between Sigmaphi and CERN measurements IMMW18, June 4, 2013

Rotating coil, Design and manufacture

Dimensions

- External \emptyset = 147mm Max Reference radius = 70mm
- overall lenth is 1675mm Active length 1150mm

Litz wire Multi-filament wire = 66 filaments External \oslash 1.15mm, 1 turn

MedAustron quadrupole magnets – Harmonics results, comparison between Sigmaphi and CERN measurements IMMW18, June 4, 2013

Rotating coil, Design and manufacture

Litz wire connections

Rotating coil Rref =30mm Carbon fiber

Mechanical data (radius position)

Dimension

External Ø = 67 mm Max reference radius = 30mm
Overall length is 1675 mm, Active length = 1150 mm

Litz wire Multi-filament wire = 66 filaments External \emptyset = 1.15 mm 1 turn

MedAustron quadrupole magnets – Harmonics results, comparison between Sigmaphi and CERN measurements IMMW18, June 4, 2013

MAGNETS AND BEAM TRANSPORT

Rotating coil calibration with our quadrupole permanent magnet

MedAustron quadrupole magnets – Harmonics results, comparison between Sigmaphi and CERN measurements IMMW18, June 4, 2013

Rotating coil calibration RESULTS

D67 Rotating coil CALIBRATION with quadrupole permanent magnet Rotating coil D67 & Rref=30mm

DxBob	-39	μm	
DyBob	103	μm	
Angle bob	2.28	mrad	

Rotating coil calibration Comparison between both rotating coils

D67 Rotating coil CALIBRATION with quadrupole permanent magnet Rotating coil D67 & Rref=30mm

DxBob	-39	μm
DyBob	103	μm
Angle bob	2.28	mrad

D147R67 offset values

Dx Coil (mm) :	-0.048
Dy Coil (mm) :	0.165
Theta Coil (rad) :	-0.0022

Comparison results MQZC2	D147R70	D67R30
ref radius meas (mm)	30	30
dx (mm)	0.062	0.077
dy (mm)	0.201	0.204
θ (rad)	0.0014	0.0010
Main field module (T.m)	0.04313	0.04310
GdI (T)	1.4378	1.4365
c3 (units)	0.87	0.87
c4 (units)	0.09	0.08
c6 (units)	0.09	0.15
c10 (units)	0.01	0.07
c14 (units)	0.00	0.19
Sum c3 to c15 (units)	1.07	2.28
Field reconstruction		
max (units)	0.92	1.30
Field reconstruction		
min (units)	-0.96	-1.28

D67R30 Rotating coil measurement **<u>qualification</u>** : harmonic

INLUAUS INON Specification

- Harmonic accuracy :1.10⁻³ (for 1% to 100% Gnom)
- Harmonic repeatability : 3.10⁻⁴ (for 1% to 100% Gnom)

AedAustron quadrupole magnets – Harmonics results	comparison between Sigmaphi and CERN measurements
MMW18, June 4, 2013	

Current / process	Harmonic components	Repeatability	
@ Inom	b6	< 0.03 unit	
3 meas	b10	< 0.02 unit	
	Σ c3 to c15	< 0.12 unit	
@ Imin (1% Inom)	b6	< 1 unit	
	b10	< 0.3 unit	
3 meas	Σ c3 to c15	< 4 unit < 1.5 unit with Drusch power supply	
3% Inom	b6	< 0.3 unit	
	b10	< 0.15 unit	
3 meas	Σ c3 to c15	< 0.8 unit	

D147R67 Rotating coil measurement **<u>qualification</u>** : harmonic

Current / process	Harmonic components	Repeatability	
@ Inom	b6	< 0.03 unit	
3 meas	b10	< 0.03 unit	
	Σ c3 to c15	< 0.06 unit	
@ Imin (3% Inom)	b6	< 0.1 unit	
	b10	< 0.1 unit	
3 meas	Σ c3 to c15	< 0.1 unit	

IMMW18

MEDAUSTRON specification

- Harmonic accuracy :2.10⁻⁴ (for 3% to 100% Gnom)
- Harmonic repeatability : 1.10⁻⁴ (for 3% to 100% Gnom)

D67R30 Rotating coil measurement **<u>qualification</u>** : axis shift

Parameters	Repeatability
Coil sensitivity Dx	7 μm (on 50 μm)
Coil sensitivity Dy	1 μm (on 50 μm)
Horizontality 10 level measurements	0.035 mrad
10 successives measurements @ Inom	Δdx < 1 μm Δdy < 2 μm ΔdΘ < 0.02 mrad
With rotating coil removal (*3 @ Inom)	$\Delta dx = 5 \ \mu m$ $\Delta dy = 2 \ \mu m$ $\Delta d\Theta = 0.07 \ mrad$
With rotating coil and magnet removal (*4 @ Inom)	$\Delta dx = 20 \ \mu m$ $\Delta dy = 4 \ \mu m$ $\Delta d\Theta = 0.11 \ mrad$
3 successives measurements @ Imin	$\Delta dx = 20 \ \mu m$ $\Delta dy = 20 \ \mu m$ $\Delta d\Theta < 0.2 \ mrad$

IMMW18

MEDAUSTRON specification

• Positionning accuracy +/-0.1mm and +/-0.2mrad

D147R67 Rotating coil measurement **qualification** : axis shift

MEDAUSTRON specification

 Positionning accuracy +/-0.1mm and +/-0.2mrad Measurement 3 times better

X direction

0.5mm FR4 sheet (coil sensitivity test)

Y Direction

Parameters	Repeatability
Coil sensitivity Dx	8 μm (on 0.541mm)
Coil sensitivity Dy	17µm (on 0.2 mm)
Horizontality 10 level measurements	0.07 mrad
10 successives measurements @ Inom	Δdx < 1μm Δdy < 3μm ΔdΘ < 0.06mrad
3 successives measurements @ Imin	Δdx < 10 μm Δdy < 10μm Δdθ < 0.1mrad
With rotating coil removal (*3 @ Inom)	Δdx < <mark>50</mark> μm Δdy < 30 μm Δd Θ < <mark>0.4</mark> mrad
With rotating coil and magnet removal (*4 @ Inom)	Δdx < <mark>50</mark> μm Δdy < 30 μm Δd Θ < <mark>0.4</mark> mrad

MedAustron quadrupole magnets – Harmonics results, comparison between Sigmaphi and CERN measurements IMMW18, June 4, 2013

MQZ-C 002 Harmonics bn from Imin to Inom

MedAustron quadrupole magnets – Harmonics results, comparison between Sigmaphi and CERN measurements IMMW18, June 4, 2013

Harmonics of the MQZ-C002 @ R=30 mm @ comparison MedAustron/Sigmaphi

MAGNETS AND BEAM TRANSPORT

MedAustron quadrupole magnets – Harmonics results, comparison between Sigmaphi and CERN measurements IMMW18, June 4, 2013

MQZ-C002 Field quality @Rref=30 mm (CERN/SIGMAPHI)

IMMW18

Error bars = 0,1 %

MQZ-C002 Transfer function - Comparison CERN/SIGMAPHI

IMMW18

Black error bars = 0,1 %

MedAustron quadrupole magnets – Harmonics results, comparison between Sigmaphi and CERN measurements IMMW18, June 4, 2013

MQZ-C002 Magnetic axis displacement (CERN/SIGMAPHI)

IMMW18

MQZ-C002 Field direction (CERN/SIGMAPHI)

MedAustron quadrupole magnets – Harmonics results, comparison between Sigmaphi and CERN measurements IMMW18, June 4, 2013

MQZ-C 002 Comparison with CERN measurements / summary

Parameters @ Inom	SIGMAPHI Results @ R67	SIGMAPHI Results @ R30	CERN Results @ R30
Transfer function	/	-0.0023983	-0.0023978
c3	1.9 unit	b3=-0.06 a3=+0.86	b3=-0.05 a3=+0.74
c4	0.45 unit	b4=0 a4=-0.09	b4=0 a4=-0.1
c6	2.2 unit	b6=-0.08 a6=0	b6=-0.07 a6=0
c10	3.6 unit	b10=0 a10=0	b10=+0.01 a10=+0.01
c14	0.22 unit	b14=0 a14=0	b14=+0.013 a14=+0.0
Σ c3 to c15	8.85 unit	1.07	1.05 +/-0.02
Field reconstruction	+6 /- 8unit @ R67 < +/- 5 unit GFR	/	/

Transfert function [T/A]

MAGNETS AND BEAM TRANSPORT

MQZ-E001 Transfer function (CERN vs SIGMAPHI)

Error Bars = 1%

MedAustron quadrupole magnets – Harmonics results, comparison between Sigmaphi and CERN measurements IMMW18, June 4, 2013

MQZ-E001 Field quality (CERN vs SIGMAPHI)

Error Bars = 5%

IMMW18

Displacement [mm]

MAGNETS AND BEAM TRANSPORT

MQZ-E001 Magnetic axis displacement (CERN / SIGMAPHI)

Current [A]

IMMW18

Roll angle [mrad]

MQZ-E001 Field direction

IMMW18

MedAustron quadrupole magnets – Harmonics results, comparison between Sigmaphi and CERN measurements IMMW18, June 4, 2013

MAGNETS AND BEAM TRANSPORT

Conclusion

- the 4 prototypes have been measured and compared with CERN, with a good agreement
- all MQZB serial magnets have been measured (9 magnets) and are within the specification (+/-10 unit for the field reconstruction)

• MQZE and MQZC serial magnets are currently in production

Thank you for your attention

IMMW18