

MEASUREMENTS OF MAX-IV GIRDER SYSTEMS

Christopher W. Ostenfeld

Danfysik A/S, Denmark

IMMW 18 June 2013

Outline

- MAX IV magnet girders
 - Description of Max IV girders

- Hall probe field mapping
 - Description of concept
 - Stability of alignment
 - Some measurements results
- Harmonic coil measurements
 - Description of concept
 - Stability of the measurements
 - Some measurement results

Production of MAX IV magnet girders

- MAX IV designed for 3 GeV with very low emittance(multi-bend achromat)
- Danfysik is producing 20 each of M1, M2 and U3 with 10-13 magnets
- Designed by Maxlab*
- In total 60 dipoles, 220 steerers, 160 quads, 120 sextupoles, 120 octupoles
- 680 magnets in total
- Small Ø25 mm aperture in the multipoles

Girders as produced

Top/bottom M1 girder as produced

Combined function dipole with pole face strips

Quadrupole

Octupole

Quadrupole

Octupole <

Skew corrector

Normal corrector

IMMW 18, New York

Measuring challenge

- Harmonic coil measurement
 - How to affix coil assembly
 - Choice of bearings
- Hall mapping
 - Purchase of new 7 m Hall bench
 - Build Hall probe(KSY 14) with temperature correction, and Hall supply
 - Long measurement campaigns
- Large volume of measurements
 - 680 individual sub segments in total
 - Demands for data handling
- Requirements for automatisation, to measure all of this efficiently

Extensive tests for First Articles

Hall measurement requirements

- Hall scans along the nominal trajectory, ± 15 mm(**Dipole**)
 - Accomplished by scanning rectangular grid, followed by interpolation
 - On-the fly(like insertion device mapping)
 - Time for complete dipole map. Around 3 hours
- Excitation curves(**Dipole**)
- Excitation curves(Quadrupoles)
 - Through available access holes
 - S=0, x= ± 5 mm
- Horizontal scans of quadrupoles
 - X=±15 mm. S=-115,0,115

Hall measurement of quadrupoles

Details on software for Hall bench

- Fully automated measurements
 - Magnet is powered up, and held for appropriate wait time
 - Hall probe is zeroed in mu-metal shield prior to measurement
 - Probe is homed on magnetic cone
 - Measurement is carried out
 - Dipole map, excitation, etc.
 - Probe zero is checked in mu-metal after measurement, and data is corrected for drift
 - Off-line correction for temperature
- Voltage/NTC logged with Keithley 2701
- Power supply control and motion control within Igor

atop		ADC Inserti	on Device	Measure	ment Syste	m			-
et dought in the	THE TYPE CLER	Plg Cell Itain	10.0m	Perchan	Hat probe by	nen i			
StartPostion	End Position Bale	d Tagger Ba			(surs	uno I	Le	nit avet	the perfect
× ū 😂	0 0 0	2 × 3 8800 [K[1.75001e*	01175.001		-	
Y a 🚍	a = 0	1 Y Y R810			N-1	4.6621	0	0	0
Z 403 C Rest Popdant	3000 2 6	Z Sangle D	at 10		2 300005	20.0095			
2 409 10 6mm		writer of Scana		Feecher	File Call				
Castand		Carrie Constantine	_			1941	14	1.E. HAD	086
Enter Calendon P	Retrame Sing	te Point Maasuret	test		courts.	(ent)	nextle	t harms	001819
Call File B314 DE	(I) X 0			Constant-	8 -1 38+EE	-126		12	× .
Order Period	Y B	4		A.L.P.	RD	0	-		
Period 28	I I					-	1	-	
	Sam	ples 0 0			K[-1.28+66	1-158		2	9
				The second	the Deleter for a share	The Part States			

Hall probe mapper setup

- Precision Hall mapper on long granite table
- Laser feed back on longitudinal z-axis and linear encoders on x,y-axes
- Alignment by scanning over magnetic pins, knife-edges
- Short term position st.dev. < 2 μ m, long term drift <10 μ m

Alignment with magnet tip

Short term repeatability				
Z (mm)		X (mm)		
Round 1	2888.7707	-61.7454		
Round 2	2888.7697	-61.7483		
Round 3	2888.7695	-61.7465		
Round 4	2888.7698	-61.7491		
Round 5	2888.7709	-61.7448		
St. Dev.	0.0006	0.0016		

Scanning dipole from side & quadrupoles through small holes in yoke

Hall probe field mapping

- High stability temperature calibrated Hall probe allows on-the-fly mapping
- Large field grid measured on-the-fly of the combined function dipoles
- Interpolated on-the-fly data agree with step-and-go data within 1.6.10-4
- Repeated measurements of field integral stable within 7.10-5

> Very good alignment and stability

Harmonic coil measurements

- Several things to consider
 - Single long coil vs short segmented coils
 - Compensated vs non-compensated
 - Integration vs voltage measurements
 - Radial vs tangential coil
- Other
 - Support material
 - Choice of bearings

Harmonic coil measurements

- Several things to consider
 - Single long coil vs short segmented coils
 - Compensated vs non-compensated
 - Integration vs voltage measurements
 - Radial vs tangential coil
- Other
 - Support material
 - Choice of bearings

Harmonic insertion coil concept

New concept (For us, anyway.....)

•Coil inserted from girder end with external encoder and motor

- Precision Heidenhain encoder(scale drum) ERA 4202 C
- •Mechanical coil positioning from girder reference surfaces
- •15 ° tangential coil with a 10.7 mm measurement radius
- •One short harmonic coil segment for each magnet
 - Coil lengths between 150 mm and 250 mm
- •3-5 coil segments per support rod, 13 segments in total
- •Calibration of each segment \rightarrow phase and gradient strength

•Voltage integration using 1 channel Metrolab 5150 with Trigger module

Coil segment positions for long M1 & M2 ends

IMMW 18, New York

Sub coil calibration

- Phase and strength calibration
- Due to differing coils lengths, several reference magnets are needed
- For 150 mm segments, 100 mm EM sextupole is used
- For 200-250 mm segments, temperature stabilized permanent magnet quadrupole is used
- Magnet is rotated 180 degrees to find coil phase error relative to mechanical reference.
- Compare with Hall/ stretch-wire results
- Appropriate Gain/Phase chosen when measuring sub-magnets

Magnet	Segment	Gain	Phase [Grad]
QDE	1	1.00113	-65.507
ΟΧΥ	2	1.01146	-65.516
QFE	3	1.01083	-19.868
ОХХ	4	1.00818	-65.429
COA (By/Bx)	5	1.02909	-19.892

Calibration data for sample 5 segment coil

Details on software for coil bench

- Running under Labview
- Each coil segment is saved, with reference, to intrinsic phase and strength
- User chooses appropriate coil to measure correct magnet sub segment.
- Power supply control within Labview, and excitation cycle runs automatically
- EXCEL templates developed
 - Traceability to calibrations and coils used

Stability of the harmonic measurements

- Short term repeatability test
 - Field gradient variation 0.4.10-4
 - Higher harmonics below 0.1 unit
 - Magnet rotation variation 0.01 mrad
 - Very stable
- Simple test of thermal stability
 - Field gradient drift 0.2 unit/°C
 - Magnet rotation drift -0.03 mrad/°C
 - Low thermal drift
- Long term stability, average for 6 quads
 - Disassembly of test jig and yoke
 - Three measurements over several days
 - Field gradient variation 2.10-4

Short term repeatability test on a quad

Test on M1 quad	Repeatability	Thermal change/°C	
Field gradient strength	0.4	0.2	Unit, 10-4
Higher harmonics, n3-4	< 0.1	0.2	Unit, 10-4
Higher harmonics, n≥5	< 0.03	0.2	Unit, 10-4
Magnet center dX, dY	< 0.001	< 0.001	mm
Magnet rotation	0.01	-0.03	mrad

Long term stability with jig/yoke disassembly

Average result, 6 quads	Stability	
Field gradient strength	2	Unit, 10-4
Higher harmonics, n3-6	< 0.4	Unit, 10-4
Higher harmonics, n≥7	< 0.1	Unit, 10-4
Magnet center dX,dY	0.004	mm
Magnet rotation	0.14	mrad

Higher harmonics of a M2 quadrupole

- Pole end contributions n=6,10,14 -> reduced for U1-5 quads by chamfering
- Remaining harmonic errors: mainly sextupole (n=3) and octupole (n=4)
- Remaining terms typically below 1 unit = 0.01%
- Measuring noise level is low
- Similar pattern for sextupole and octupole magnets

Measured higher harmonic content and st.deviation at nominal current

IMMW 18, New York

Trim sextupole with skew

quad, x- and y-corr windings

Sextupole

Gradient dipole with pole face

Sextupole

Trim sextupole with skew quad, x- and y-corr windings

Combined function

quadrupole/sextupole

strips

Next Project: Max IV 1.5 GeV

SCo

SDo

DIP

SDi

SCi

SQFi

- Same concept
- 12 identical double-bend achromats
- 96 m circumference
- 6 nm horizontal emittance
- These magnets are much larger(around 4.5 m)
- Exotic combined-function elements
- Same exact order for Solaris in Krakow

IMMW	18,	New	York
------	-----	-----	------

Still in design phase

Summary

- We have devised a measurement scheme to measure Maxlab girders with high stability
- Hall system shows high positional reproducibility, and stability
- Succesful implementation of tangential, segmented coils
- Harmonic coils can be reproducibly "lodged" in the girder
- High degree of automatization implemented in Igor and Labview
- Awaiting MaxLab 1.5 GeV girders for measurement

Acknowledgements

- Claus Hansen: Project Manager
- Dan Kristoffersen: Project
 engineer
- Franz Bødker: Physicist
- Gunver Nielsen: Physicist
- Esben Krauthammer: Physicist
- Christian Glarbo: Physicist
- Kristoffer Andersen:
 Measurement Technician