High-pt theory and data are traditionally used to explore high-pt parton interactions with QGP, while QGP bulk properties are explored through low-pt data and corresponding models. However, with a proper description of high-pt medium interactions, high-pt probes also become a powerful tool for inferring bulk QGP properties, as they are sensitive to global QGP parameters. With the goal of developing a multipurpose QGP tomography tool, over the past several years, we developed the dynamical energy loss formalism, and the corresponding fully optimized DREENA numerical framework. As first steps towards QGP tomography, we will use DREENA framework to address how we can directly from experimental data i) differentiate between different energy loss mechanisms, ii) infer the shape of QGP droplet. The research presented in this talk will therefore demonstrate how high-pt theory and data can be used to both infer the nature of high pt-parton medium interactions, and important bulk QGP medium properties.
Jin Huang
Niklas Mueller